Control of saccades in health and disease

Summary

Principal Investigator: Reza Shadmehr
Abstract: DESCRIPTION (provided by applicant): It is commonly assumed that saccades are ballistic and stereotypical. Yet, there is structured variability in the motor commands that initiate a saccade to a target. We propose that this variability is partly a reflection of a systematic change in the internal value that the brain associates with a visual stimulus. That is, our brain assigns a value to targets of our eye movements, and this relative value modulates the motor commands that move our eyes. If this variability was uncompensated, that is, if saccades were open-loop, then the variability in the motor commands that initiated the saccade would affect saccade endpoints. In healthy people, however, saccade endpoints are accurate despite the fact that the motor commands that initiate the saccade are variable. We suggest that this is because control of saccades is strongly dependent on internal models through the cerebellum, monitoring the outgoing motor commands and effectively `steering'the saccade by adding motor commands late in the saccade's trajectory. The compensation is effective only if this internal model is calibrated, which links the problem of control with adaptation. Here, we propose a single principle of control for saccades: Expected costs and rewards of a movement are evaluated by the basal ganglia, resulting in an internal value that modulates the motor commands that initiate the saccade. As the motor commands are generated, the cerebellum monitors them and predicts their sensory consequences, producing adjustments that steer the movement to the goal. If successful, our project may produce a major shift in oculomotor research by linking variability in trajectory of saccades with expected rewards and internal models. These concepts have proven fundamental in understanding control of other movements like reaching. As a result, we may be able to produce a single conceptual framework for how the brain controls movements in general. PUBLIC HEALTH RELEVANCE: Our aim is to produce a new, coherent theory of how various brain structures like the basal ganglia and the cerebellum contribute to control of saccades. While cerebellar patients exhibit dysmetria in their saccades, our proposal suggests that dysmetria is not random, but related to the intrinsic value that the brain assigns to the visual stimulus. The role of basal ganglia in control of movements has remained a deep puzzle;our proposal suggests that there may be a link between this structure and the internal value that the brain assigns to a visual stimulus, and that this factor accounts for some of the variability in the motor commands that initiate saccades.
Funding Period: ----------------2009 - ---------------2011-
more information: NIH RePORT

Top Publications

  1. ncbi Control of movements and temporal discounting of reward
    Reza Shadmehr
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, USA
    Curr Opin Neurobiol 20:726-30. 2010
  2. pmc The intrinsic value of visual information affects saccade velocities
    Minnan Xu-Wilson
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, 416 Traylor Bldg, 720 Rutland Ave, Baltimore, MD, 21205, USA
    Exp Brain Res 196:475-81. 2009
  3. pmc Cerebellar contributions to adaptive control of saccades in humans
    Minnan Xu-Wilson
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
    J Neurosci 29:12930-9. 2009
  4. pmc Temporal discounting of reward and the cost of time in motor control
    Reza Shadmehr
    Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
    J Neurosci 30:10507-16. 2010

Detail Information

Publications4

  1. ncbi Control of movements and temporal discounting of reward
    Reza Shadmehr
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, USA
    Curr Opin Neurobiol 20:726-30. 2010
    ..The value that the brain assigns to the stimulus, and the rate at which it discounts this value in time, form a cost that appears to influence the motor commands that move our body...
  2. pmc The intrinsic value of visual information affects saccade velocities
    Minnan Xu-Wilson
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, 416 Traylor Bldg, 720 Rutland Ave, Baltimore, MD, 21205, USA
    Exp Brain Res 196:475-81. 2009
    ..The intrinsic value of visual information appears to have a small but significant influence on the motor commands that guide saccades...
  3. pmc Cerebellar contributions to adaptive control of saccades in humans
    Minnan Xu-Wilson
    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
    J Neurosci 29:12930-9. 2009
    ....
  4. pmc Temporal discounting of reward and the cost of time in motor control
    Reza Shadmehr
    Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
    J Neurosci 30:10507-16. 2010
    ..The cost depends on the value that the brain assigns to stimuli, and the rate at which it discounts this value in time. The motor commands that move our eyes reflect this cost of time...