Neural Probes for Electrical and Chemical Sensing

Summary

Principal Investigator: Daryl R Kipke
Abstract: DESCRIPTION (provided by applicant): Our long-term research goal is to develop implantable neurotechnologies for long-term and high fidelity microscale electrical and chemical interfaces to the central nervous system. The objective of this two-year project is to develop a new type of multi-modal neural probe by integrating chemical sensors on microfabricated thin-film silicon devices that are presently used for neural recording, stimulation, and microscale drug injection. The first specific aim is to develop and characterize integrated chemical sensing of two electroactive neurochemicals (dopamine and serotonin), along with concurrent electrophysiological recording. The primary tasks include developing electrode site materials, integrating a reference electrode onto the probe substrate, and characterizing 'electrode site spacing for concurrent neurochemical sensing and electrophysiological recording. The second specific aim is to develop arid characterize integrated chemical sensing of two non-electroactive neurochemicals (acetylcholine and glutamate), along with concurrent electrophysiological recording and microfluidic delivery of pharmacological agents. The primary tasks of this aim include developing polymer wells and conductive polymer coatings for enzyme entrapment and characterizing sensor performance. In both aims, the multi-modal devices will be quantitatively evaluated and systematically refined through bench top testing and in vivo acute experiments. This project significantly extends the state-of-the-art for microscale neural interfaces by developing a new technology that combines precise, high-resolution neurochemical sensing with high-fidelity neural recording and targeted drug delivery. This technology is likely to provide a solid foundation for developing a new class of implantable device that will enable next-generation, closed-loop neuroprostheses and neuromodulation systems for improved treatments of neurological disease and injury, such as Parkinson's Disease and severe movement disorders.
Funding Period: 2005-09-30 - 2007-08-31
more information: NIH RePORT

Top Publications

  1. ncbi Spatiotemporal pH dynamics following insertion of neural microelectrode arrays
    Matthew D Johnson
    Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
    J Neurosci Methods 160:276-87. 2007
  2. ncbi Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays
    Matthew D Johnson
    Dept of Biomed Eng, Michigan Univ, Ann Arbor, MI 48109, USA
    Conf Proc IEEE Eng Med Biol Soc 1:3178-81. 2006
  3. doi Chemical sensors with integrated electronics
    Segyeong Joo
    College of Engineering, University of Utah, 72 Central Campus Drive, Salt Lake City, UT 84112, USA
    Chem Rev 108:638-51. 2008
  4. pmc Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings
    Matthew D Johnson
    Department of Biomedical Engineering, University of Michigan, 1101 Beal Street, Ann Arbor, MI 48109, USA
    J Neurosci Methods 174:62-70. 2008

Scientific Experts

Detail Information

Publications4

  1. ncbi Spatiotemporal pH dynamics following insertion of neural microelectrode arrays
    Matthew D Johnson
    Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
    J Neurosci Methods 160:276-87. 2007
    ..The potentiometric microsensor array has implications not only as a useful tool to measure extracellular pH, but also as a feedback tool for delivery of pharmacological agents to treat surgical brain trauma...
  2. ncbi Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays
    Matthew D Johnson
    Dept of Biomed Eng, Michigan Univ, Ann Arbor, MI 48109, USA
    Conf Proc IEEE Eng Med Biol Soc 1:3178-81. 2006
    ..This diagnostic technology has important implications for intervention therapies in order to more effectively treat acute surgical brain trauma...
  3. doi Chemical sensors with integrated electronics
    Segyeong Joo
    College of Engineering, University of Utah, 72 Central Campus Drive, Salt Lake City, UT 84112, USA
    Chem Rev 108:638-51. 2008
  4. pmc Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings
    Matthew D Johnson
    Department of Biomedical Engineering, University of Michigan, 1101 Beal Street, Ann Arbor, MI 48109, USA
    J Neurosci Methods 174:62-70. 2008
    ..These neural probes are capable of incorporating customized microelectrode geometries and configurations, which may be useful for examining specific spatiotemporal relationships between electrical and chemical signaling in the brain...