PHOSPHOLIPIDS AND ULCER PROTECTION

Summary

Principal Investigator: Lenard Lichtenberger
Abstract: DESCRIPTION: Non-steroidal anti-inflammatory drugs are heavily consumed world-wide due to their great efficacy to inhibit fever, inflammation and pain. The major side effects of these drugs relate to their gastrointestinal (GI) toxicity resulting in significant morbidity/mortality of chronic NSAID users. Although NSAIDs inhibit cyclo-oxygenase (COX) activity and the synthesis of GI-protective prostagalandins, it is also clear that they topically induce acute surface injury to the GI mucosa. The proposed experiments are related to the following observations made by our laboratory: 1) that the mucosal surface of the GI tract has hydrophobic (acid-resistant) surface properties due to the presence of an extracellular lining of zwitterionic phospholipids; 2) that NSAIDs form a chemical association with zwitternoic phospholipids; and 3) that NSAIDs preassociated with phospholipids have low GI toxicity and enhanced therapeutic activity. Based on these observations we have designed experiments to investigate whether NSAIDS induce topical injury by attenuating the phospholipid hydrophobic surface barrier of the stomach, and how the above surface changes relate to the drugs' inhibitory activity. This will be accomplished by administering selected NSAIDS (in the unmodified and phospholipid-associated state) to either wild-type or COX-1 deficient rodents and assessing the dose- and time-dependence in the reduction in surface barrier properties (gastric contact angles) and COX activity. We will determine if the phospholipid-associated NSAIDs have a greater ability than unmodified NSAIDs to inhibit the COX-2 activity of cells selectively expressing this isoform, either naturally or by genetic manipulation. We will investigate the molecular interaction of NSAIDs with phospholipids by Nuclear Magnetic Resonance and study the effect of these drugs on the hydrophobicity and fluidity of membranes and their ability to undergo fusion employing fluorescent probes. Lastly, we will investigate the ability of NSAIDs, that are secreted in the bile, to block the ability of biliary lecithin to bind to and detoxify bile salts, using both in vivo and in vitro systems, in an attempt to understand the mechanism that these drugs induce injury to the small intestinal mucosa.
Funding Period: 1998-08-15 - 2003-07-31
more information: NIH RePORT

Top Publications

  1. ncbi NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes
    Lenard M Lichtenberger
    The Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX 77030, USA
    J Pharm Pharmacol 58:1421-8. 2006
  2. ncbi Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes
    Elizabeth J Dial
    Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
    J Gastroenterol Hepatol 23:430-6. 2008
  3. ncbi Importance of biliary excretion of indomethacin in gastrointestinal and hepatic injury
    Elizabeth J Dial
    Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
    J Gastroenterol Hepatol 23:e384-9. 2008

Detail Information

Publications3

  1. ncbi NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes
    Lenard M Lichtenberger
    The Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX 77030, USA
    J Pharm Pharmacol 58:1421-8. 2006
    ..This understanding of the interaction of NSAIDs with membrane phospholipids may prove valuable in the design of novel NSAID formulations with reduced gastrointestinal side-effects...
  2. ncbi Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes
    Elizabeth J Dial
    Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
    J Gastroenterol Hepatol 23:430-6. 2008
    ....
  3. ncbi Importance of biliary excretion of indomethacin in gastrointestinal and hepatic injury
    Elizabeth J Dial
    Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
    J Gastroenterol Hepatol 23:e384-9. 2008
    ..We investigated the role of bile acids and PC in the mechanism of indomethacin-induced epithelial injury...