ZINC COORDINATION AND REGULATION OF ZINC METALLOPROTEINS

Summary

Principal Investigator: David P Giedroc
Affiliation: Indiana University
Country: USA
Abstract: This proposal requests continued support for ongoing studies of the structure, bioinorganic chemistry and allosteric regulation by zinc of selected zinc metalloregulatory transcription factors derived from mammalian and prokaryotic organisms which play roles in zinc homeostasis. Human metal-responsive element (MRE)-binding transcription factor-1 (MTF-1) possesses six Cys2-His2 zinc finger domains and activates the expression of metallothionein genes in a zinc-dependent manner. Previous studies led the PI to hypothesize that the N-terminal four fingers play a structural role in mediating high affinity binding to the MRE while the C-terminal finger domains perform a zinc sensor and/or transducer role. The following experiments on MTF-1 are proposed: 1) Define the solution structure of a C-terminal zinc finger fragment (finger domains 4-6) of MTF-1 using multi-dimensional NMR spectroscopy. These studies will be complemented by equilibrium and kinetic metal binding studies to delineate the unusual metal binding properties of these metalloregulatory domains; and 2) Test the metalloregulatory model of MTF-1 function in vivo by determining the metal-dependent transcriptional activation efficacy of broken-finger mutants of intact MTF-1 by transfection experiments in mammalian and yeast cells. Comparative studies of three evolutionarily related prokaryotic zinc metalloregulatory repressors, Synechococcus SmtB, Synechocystis ZiaR, S. aureus CzrA and a cadmium repressor, S. aureus pI258 CadC are also proposed. These studies will provide a critical test of the metalloregulatory hypothesis which holds that the biological specificity and mechanism of regulation is encoded in the bioinorganic chemistry (metal coordination chemistry, specificity, affinity and stoichiometry) and the thermodynamic linkage relationships between metal binding, DNA binding and protein self-association of these metal switch proteins. Results of the proposed studies will provide new molecular insights into the relationships between structure, coordination chemistry and regulation by metal ions in metalloregulatory transcription factors, which, over the longer term, will permit their systematic re-engineering as templates for metal-site redesign and metal sensors with novel properties, tailored to biomedical and bioremediation uses.
Funding Period: 1991-04-01 - 2004-03-31
more information: NIH RePORT

Top Publications

  1. ncbi A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile
    Tong Liu
    Department of Biochemistry and Biophysics, Texas A and M University, College Station, Texas 77843 2128, USA
    Biochemistry 47:10564-75. 2008
  2. ncbi Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains
    Meiying Zheng
    Department of Molecular Physiology and Biological Physics, Integrated Center for Structure Function Innovation, University of Virginia, Charlottesville, VA 22908 0736, USA
    Acta Crystallogr D Biol Crystallogr 65:356-65. 2009

Detail Information

Publications3

  1. ncbi A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile
    Tong Liu
    Department of Biochemistry and Biophysics, Texas A and M University, College Station, Texas 77843 2128, USA
    Biochemistry 47:10564-75. 2008
    ..The evolutionary implications of these findings for the ArsR metal sensor family are discussed...
  2. ncbi Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains
    Meiying Zheng
    Department of Molecular Physiology and Biological Physics, Integrated Center for Structure Function Innovation, University of Virginia, Charlottesville, VA 22908 0736, USA
    Acta Crystallogr D Biol Crystallogr 65:356-65. 2009
    ..Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors...