Direct MRI of Neuroelectric Activity for Animal Neuroimaging

Summary

Principal Investigator: Trong Kha Truong
Abstract: DESCRIPTION (provided by applicant): Neuroscience research on animal models plays a fundamental role in improving the diagnosis and treatment of human neurological disorders, because of the capacity for genetic and pharmacological manipulations. Among the most widely used methods to investigate brain function, electrophysiological recordings benefit from a high temporal resolution, but are invasive and have a limited spatial coverage. Conversely, blood oxygenation level-dependent functional MRI is noninvasive and provides full brain coverage, but cannot quantitatively and accurately localize neural activity in space and time because of the complex neurovascular coupling. A novel MRI technique, termed Lorentz effect imaging (LEI), which detects the ionic currents and surrounding water molecules induced by neural activity, was proposed to address these limitations. This technique has been applied to image ionic currents in solution with current densities similar to those induced by neural activity as well as sensory nerve action potentials in the human median nerve in vivo with a millisecond temporal specificity. Given these promising results, it is hypothesized that LEI can be further developed to image neural activity in the brain with a high spatial and temporal specificity across functional networks. The goal of this project is to develop such a noninvasive and specific functional neuroimaging technique for animal research, which would have a significant impact in neuroscience. Because of potential confounding factors such as physiological noise, the application of LEI to the brain requires a further increase in sensitivity. In addition, its validation requires a robust stimulation paradigm that can be accurately controlled in space and time. These two requirements can be met by using a 7 T animal MRI scanner with a significantly higher field strength and gradient amplitude as compared to the human scanner used previously, as well as a novel transgenic mouse model expressing the light-activated ion channel Channelrhodopsin-2 (ChR2) in selected neurons throughout the brain, which can be activated in vivo by photostimulation with visible light. Three specific aims are proposed. Aim 1 is to demonstrate the feasibility of LEI to image neural activity in the brain in vivo by photostimulating the cortical surface of anesthetized ChR2 transgenic mice and by using a careful experimental design to remove any confounding hemodynamic modulations. Aim 2 is to demonstrate the ability of LEI to accurately localize neural activity in space and time by varying the spatial extent or timing of the photostimulation. Aim 3 is to demonstrate the ability of LEI to track and map neural activity across functional networks by photostimulating the olfactory bulb and by using different activation paradigms designed to selectively track neural activity in different regions of the olfactory neural circuit or to simultaneously map all functionally connected areas. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a novel MRI technique for animal functional neuroimaging combining the high temporal specificity of electrophysiological recordings with the noninvasiveness and high spatial coverage inherent in MRI. Such a technique has the potential to noninvasively track and map neural activity in vivo with a high spatial and temporal specificity across the whole brain, which would significantly enhance our ability to investigate the function of the nervous system and hence improve the understanding, prevention, diagnosis, and treatment of many neurological and psychiatric disorders.
Funding Period: 2011-02-01 - 2015-01-31
more information: NIH RePORT

Top Publications

  1. pmc Dynamic correction of artifacts due to susceptibility effects and time-varying eddy currents in diffusion tensor imaging
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, NC 27705, USA
    Neuroimage 57:1343-7. 2011
  2. pmc Inherent correction of motion-induced phase errors in multishot spiral diffusion-weighted imaging
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina 27705, United States of America
    Magn Reson Med 68:1255-61. 2012
  3. pmc Integrated parallel reception, excitation, and shimming (iPRES)
    Hui Han
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina 27705, USA
    Magn Reson Med 70:241-7. 2013
  4. pmc Electromagnetohydrodynamic modeling of Lorentz effect imaging
    Navid Pourtaheri
    Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708, USA Electronic address
    J Magn Reson 236:57-65. 2013
  5. pmc Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, United States of America
    PLoS ONE 9:e91424. 2014

Detail Information

Publications7

  1. pmc Dynamic correction of artifacts due to susceptibility effects and time-varying eddy currents in diffusion tensor imaging
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, NC 27705, USA
    Neuroimage 57:1343-7. 2011
    ....
  2. pmc Inherent correction of motion-induced phase errors in multishot spiral diffusion-weighted imaging
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina 27705, United States of America
    Magn Reson Med 68:1255-61. 2012
    ....
  3. pmc Integrated parallel reception, excitation, and shimming (iPRES)
    Hui Han
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina 27705, USA
    Magn Reson Med 70:241-7. 2013
    ..To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming...
  4. pmc Electromagnetohydrodynamic modeling of Lorentz effect imaging
    Navid Pourtaheri
    Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708, USA Electronic address
    J Magn Reson 236:57-65. 2013
    ....
  5. pmc Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo
    Trong Kha Truong
    Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, United States of America
    PLoS ONE 9:e91424. 2014
    ..These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo...