Computer-based holography and middle-ear function

Summary

Principal Investigator: JOHN ROSOWSKI
Affiliation: Harvard University
Country: USA
Abstract: The tympanic membrane (TM) is the initial structure involved in the middle-ear's acoustic-mechanical transformation of environmental sounds to sound within the inner ear. There is good evidence that the form of the TM helps define the frequency range to which the ear is sensitive, including correlations between the sensitivity and range of hearing and the size and shape of the TM. While we know some basic facts about the workings of the healthy TM in a limited frequency range, there are many issues that are unresolved including the effect of TM shape on function, the effect of large differences in TM mechanical properties across species as well as how the TM functions at higher frequencies. There are also questions regarding the workings of the pathologic TM, e.g. How do perforations affect the motion of the entire TM? and Do grafted membranes work like normal TMs? The work proposed here will apply a real-time fiber-optic electro-holographic system based on fast computer-based video-processing to the study of the sound-induced displacement of the TM in normal ears of several animal species (including humans) as well as in ears with induced pathologies and reconstructions. The optical measurement system produces a continuously updated display of time-averaged holograms (up to 500 frames a second) of the displacement of the surface of the TM. This display allows observations of iso-displacement contours of the entire TM surface (with a resolution of 50-200 nm) while the amplitude and/or frequency of the stimulus sound are continuously varied. Such observations lead to easy identification of the critical frequencies and the level dependence of TM displacement patterns. A second version of the system (stroboscopic holography) allows measurement with resolutions of 1-10 nm of the magnitude and phase of the displacement of the entire membrane surface. A third version (dual-wavelength holography) allows measurement of the static shape of the TM with 1-10 nm resolution. The applications of these optical techniques include the identification and quantification of wave travel on the surface of the normal TM, investigations of inter-specific differences in TM motion and TM mechanical parameters, and tests of hypotheses concerning the sensitivity of membrane displacement patterns to ossicular disorders and TM perforations as well as the motion of various TM graft configurations in surgically reconstructed human ears.
Funding Period: 2007-01-01 - 2009-12-31
more information: NIH RePORT

Top Publications

  1. ncbi Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz
    John J Rosowski
    Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
    Hear Res 253:83-96. 2009
  2. ncbi Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
    Maria Del Socorro Hernández-Montes
    Worcester Polytechnic Institute, Department of Mechanical Engineering and Center for Holographic Studies and Laser micro mechaTronics, Worcester, Massachusetts 21202, USA
    J Biomed Opt 14:034023. 2009

Scientific Experts

Detail Information

Publications2

  1. ncbi Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz
    John J Rosowski
    Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
    Hear Res 253:83-96. 2009
    ..Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined...
  2. ncbi Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
    Maria Del Socorro Hernández-Montes
    Worcester Polytechnic Institute, Department of Mechanical Engineering and Center for Holographic Studies and Laser micro mechaTronics, Worcester, Massachusetts 21202, USA
    J Biomed Opt 14:034023. 2009
    ..Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed...