EFFECT OF SERINE PROTEASES BY RADIATION IN CNS INJURY

Summary

Principal Investigator: JASTI RAO
Abstract: DESCRIPTION: (Adapted from the investigator's abstract) The central nervous system (CNS) microvasculature differs morphologically and functionally from that of other organs. The CNS is the dose-limiting tissue in the radiotherapeutic management of a wide variety of tumors. Alleviating or protecting against radiation-induced CNS injury would thus be of obvious advantage in cancer treatment. Among the most significant clinical manifestations or radiation toxicity in the CNS are severe alterations in the structural and functional integrity of the brain microvasculature, which may lead to abnormal glial- and endothelial-cell proliferation, fibrosis, edema, and possibly necrosis. The proposed research is based on the hypothesis that (a) the recovery/repair response of the CNS to radiation dependence on gene induction or reduction of specific proteases and inhibitors, and (b) protease/inhibitor activation regulates the astrocyte/glial-endothelial cell interaction. Our Specific Aims are: (1) Define the mechanisms responsible for radiation-induced uPA, uPAR, and PN-I by using in vitro solo and co-cultures of human astrocytes, glial, and cerebral microvascular endothelial cells. These investigations will include determinations of transcriptional activity, mRNA stability, and active protein levels. First they will determine in vitro, the gene and protein expression of uPA, uPAR and PN-I, which can be induced by radiation in solo and co-cultures of these cells by ELISA, western blotting and northern blotting. Second, they will determine the effect of various pharmacological inhibitors that downregulate these molecules. Finally in addition to pharmacologic inhibitors that affect these molecules, they will also target these molecules by antisense approach (obtain stable transfectants for uPA/uPAR in these cell lines) or antisense sequences delivered via the recombinant adenoviral system which is already established in their laboratory. The effects of these direct and indirect reagents that regulate these molecules will also be assessed in combination with radiation to determine if they exert a synergistic or additive effect on capillary-like structure formation. (2) Determine the effects of induced or decreased gene expression of uPA, uPAR, and PN-I on the radioresponse in in vivo models, and assess the effect of the antisense stable transfectants and inhibitor specified in Specific Aim 1 on tumor angiogenesis in vivo. These investigations will first focus on determining whether the effects in the brain microvasculature correlate with the results of in vitro experiments. Next they will determine the effect of antisense stable transfectants, AEBSF and recombinant adenoviral antisense constructs for uPA/uPAR with and without irradiation, on tumor angiogenesis in vivo. The proposed studies should generate insight not only into the pathogenesis of radiation-induced CNS injury, but also into the processes necessary for successful recovery. This information in turn should suggest novel targets for therapeutic intervention.
Funding Period: 2000-05-01 - 2005-01-31
more information: NIH RePORT

Top Publications

  1. ncbi Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line
    Niranjan Yanamandra
    Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, IL 61656, USA
    Int J Cancer 115:998-1005. 2005
  2. ncbi Activation of p53/p21Waf1/Cip1 pathway by 5-aza-2'-deoxycytidine inhibits cell proliferation, induces pro-apoptotic genes and mitogen-activated protein kinases in human prostate cancer cells
    Sai Murali Krishna Pulukuri
    Program of Cancer Biology and Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
    Int J Oncol 26:863-71. 2005
  3. pmc RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo
    Sai MuraliKrishna Pulukuri
    Department of Biomedical and Therapeutic Sciences Program of Cancer Biology, University of Illinois College of Medicine, Peoria, Illinois 61656, USA
    J Biol Chem 280:36529-40. 2005
  4. ncbi Proteases and glioma angiogenesis
    Sajani S Lakka
    Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
    Brain Pathol 15:327-41. 2005

Detail Information

Publications4

  1. ncbi Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line
    Niranjan Yanamandra
    Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, IL 61656, USA
    Int J Cancer 115:998-1005. 2005
    ..Our study demonstrates that rAAV-TFPI-2-mediated gene therapy offers a novel tool for the treatment of brain tumors...
  2. ncbi Activation of p53/p21Waf1/Cip1 pathway by 5-aza-2'-deoxycytidine inhibits cell proliferation, induces pro-apoptotic genes and mitogen-activated protein kinases in human prostate cancer cells
    Sai Murali Krishna Pulukuri
    Program of Cancer Biology and Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
    Int J Oncol 26:863-71. 2005
    ..Therefore, our data indicate that p53 status in tumor cells may be critical for the clinical efficacy and toxicity of 5-aza-CdR...
  3. pmc RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo
    Sai MuraliKrishna Pulukuri
    Department of Biomedical and Therapeutic Sciences Program of Cancer Biology, University of Illinois College of Medicine, Peoria, Illinois 61656, USA
    J Biol Chem 280:36529-40. 2005
    ..Thus, RNA interference-directed targeting of uPA and uPAR is a convenient and novel tool for studying the biological role of the uPA-uPAR system and raises the potential of its application for prostate cancer therapy...
  4. ncbi Proteases and glioma angiogenesis
    Sajani S Lakka
    Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
    Brain Pathol 15:327-41. 2005
    ..However, careful testing of these combinations are most important because multiple effects of these combinations play a significant role in angiogenesis...