Gene Symbol: VAM7
Description: Vam7p
Alias: VPL24, VPS43, Vam7p
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Mima J, Wickner W. Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A. 2009;106:16191-6 pubmed publisher
    ..we now show that phosphoinositides have 4 distinct roles: PI(3)P is recognized by the PX domain of the SNARE Vam7p; PI(3)P enhances the capacity of membrane-bound SNAREs to drive fusion in the absence of SNARE chaperones; either ..
  2. Fratti R, Wickner W. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. J Biol Chem. 2007;282:13133-8 pubmed
    ..One SNARE, Vam7p, has an N-terminal PX domain which binds to phosphatidylinositol 3-phosphate (PI(3)P) and to HOPS and a C-terminal ..
  3. Fukuda R, McNew J, Weber T, Parlati F, Engel T, Nickel W, et al. Functional architecture of an intracellular membrane t-SNARE. Nature. 2000;407:198-202 pubmed
    ..SNAP-25 may thus be the exception rather than the rule, having been derived from genes that encoded separate light chains that fused during evolution to produce a single gene encoding one protein with two helices. ..
  4. Collins K, Thorngren N, Fratti R, Wickner W. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J. 2005;24:1775-86 pubmed
    ..Sec17p may displace HOPS from SNAREs to permit subsequent rounds of fusion. ..
  5. Cheever M, Sato T, de Beer T, Kutateladze T, Emr S, Overduin M. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol. 2001;3:613-8 pubmed
    ..Protein transport to the yeast vacuole depends on the Vam7 t-SNARE and its phox homology (PX) domain...
  6. Wang C, Stromhaug P, Kauffman E, Weisman L, Klionsky D. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol. 2003;163:973-85 pubmed
    ..Accordingly, we propose that the Ccz1-Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion. ..
  7. Angers C, Merz A. HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles. Mol Biol Cell. 2009;20:4563-74 pubmed publisher
    ..We propose that AP-3 remains associated with budded vesicles, interacts with Vps41 and HOPS upon vesicle docking at the vacuole, and finally dissociates during docking or fusion. ..
  8. Lee S, Kovacs J, Stahelin R, Cheever M, Overduin M, Setty T, et al. Molecular mechanism of membrane docking by the Vam7p PX domain. J Biol Chem. 2006;281:37091-101 pubmed
    The Vam7p t-SNARE is an essential component of the vacuole fusion machinery that mediates membrane trafficking and protein sorting in yeast...
  9. Jun Y, Thorngren N, Starai V, Fratti R, Collins K, Wickner W. Reversible, cooperative reactions of yeast vacuole docking. EMBO J. 2006;25:5260-9 pubmed
    ..Docked vacuoles finally assemble SNARE complexes, yet still require physiological temperature and lipid rearrangements to complete fusion. ..

More Information


  1. Stroupe C, Collins K, Fratti R, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J. 2006;25:1579-89 pubmed report that pure, active HOPS complex binds phosphoinositides and the PX domain of the vacuolar SNARE protein Vam7p. These binding interactions support HOPS complex association with the vacuole and explain its enrichment at the ..
  2. Jun Y, Xu H, Thorngren N, Wickner W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J. 2007;26:4935-45 pubmed
    ..However, normal fusion is restored by the addition of both Sec18p and the soluble SNARE Vam7p. In restoring fusion, Sec18p promotes the disassembly of trans-SNARE complexes, and Vam7p enhances their assembly...
  3. Izawa R, Onoue T, Furukawa N, Mima J. Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem. 2012;287:3445-53 pubmed publisher
    ..In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to ..
  4. McNew J, Parlati F, Fukuda R, Johnston R, Paz K, Paumet F, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature. 2000;407:153-9 pubmed
    ..Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis. ..
  5. Ungermann C, von Mollard G, Jensen O, Margolis N, Stevens T, Wickner W. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J Cell Biol. 1999;145:1435-42 pubmed
    Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles...
  6. Ungermann C, Wickner W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 1998;17:3269-76 pubmed
    ..We now report a functional characterization of the vacuolar SNARE Vam7p, a SNAP-25 homolog. Although Vam7p has no hydrophobic domains, it is tightly associated with the vacuolar membrane...
  7. Fratti R, Collins K, Hickey C, Wickner W. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem. 2007;282:14861-7 pubmed
    ..and diacylglycerol), the Rab Ypt7p, the Rab-effector complex HOPS, and 4 SNAREs: the Q-SNAREs Vti1p, Vam3p, and Vam7p and the R-SNARE Nyv1p...
  8. Alpadi K, Kulkarni A, Comte V, Reinhardt M, Schmidt A, Namjoshi S, et al. Sequential analysis of trans-SNARE formation in intracellular membrane fusion. PLoS Biol. 2012;10:e1001243 pubmed publisher
    ..This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology. ..
  9. Karunakaran V, Wickner W. Fusion proteins and select lipids cooperate as membrane receptors for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vam7p. J Biol Chem. 2013;288:28557-66 pubmed publisher
    b>Vam7p, the vacuolar soluble Qc-SNARE, is essential for yeast vacuole fusion...
  10. Laage R, Ungermann C. The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion. Mol Biol Cell. 2001;12:3375-85 pubmed
    ..We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion. ..
  11. Tsui M, Tai W, Banfield D. Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Mol Biol Cell. 2001;12:521-38 pubmed
    ..Rather our data are consistent with the existence of multiple (perhaps parallel) trafficking pathways where Sed5p-containing SNARE complexes play overlapping and/or distinct functional roles. ..
  12. Sato T, Darsow T, Emr S. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol. 1998;18:5308-19 pubmed
    ..A fraction of Vam7p was localized to vacuolar membranes...
  13. Weimbs T, Low S, Chapin S, Mostov K, Bucher P, Hofmann K. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci U S A. 1997;94:3046-51 pubmed
    ..The evolutionary conservation of the SNARE coiled-coil homology domain suggests that this domain has a similar function in different membrane fusion proteins. ..
  14. Krämer L, Ungermann C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol Biol Cell. 2011;22:2601-11 pubmed publisher
    ..complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3...
  15. Lobingier B, Merz A. Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol Biol Cell. 2012;23:4611-22 pubmed publisher
    ..Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1...
  16. Roy R, Peplowska K, Rohde J, Ungermann C, Langosch D. Role of the Vam3p transmembrane segment in homodimerization and SNARE complex formation. Biochemistry. 2006;45:7654-60 pubmed
    ..In contrast, formation of the quaternary SNARE complex from recombinant Vam3p, Nyv1p, Vti1p, and Vam7p subunits did not depend on the transmembrane segment of Vam3p nor on the transmembrane segments of its partner ..
  17. Wang Y, Dulubova I, Rizo J, Sudhof T. Functional analysis of conserved structural elements in yeast syntaxin Vam3p. J Biol Chem. 2001;276:28598-605 pubmed
    ..experiments, the SNARE motif mutations and the insertions did not alter the association of Vam3p with Vam7p, Vti1p, Nyv1p, and Ykt6p, other vacuolar SNARE proteins implicated in fusion...
  18. Lai X, Beilharz T, Au W, Hammet A, Preiss T, Basrai M, et al. Yeast hEST1A/B (SMG5/6)-like proteins contribute to environment-sensing adaptive gene expression responses. G3 (Bethesda). 2013;3:1649-59 pubmed publisher
    ..Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways. ..
  19. Gossing M, Chidambaram S, Fischer von Mollard G. Importance of the N-terminal domain of the Qb-SNARE Vti1p for different membrane transport steps in the yeast endosomal system. PLoS ONE. 2013;8:e66304 pubmed publisher
    ..As different transport steps were affected our data demonstrate the importance of a folded Vti1p H(abc) domain for transport. ..
  20. Karunakaran S, Fratti R. The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic. 2013;14:650-62 pubmed publisher
    ..transition was inhibited by disrupting the 3Q:1R stoichiometry of SNARE bundles with the mutant SNARE Vam7p(Q283R) ...
  21. Schwartz M, Nickerson D, Lobingier B, Plemel R, Duan M, Angers C, et al. Sec17 (?-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. elife. 2017;6: pubmed publisher
    ..Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step. ..
  22. Liu X, Mao K, Yu A, Omairi Nasser A, Austin J, Glick B, et al. The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion. Curr Biol. 2016;26:150-160 pubmed publisher
    ..and Atg11 interact with the vacuolar SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) Vam7 independently of each other...
  23. Furukawa N, Mima J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci Rep. 2014;4:4277 pubmed publisher
    ..Thus, our findings uncover multiple and distinct strategies of SNAREs to directly mediate fusion specificity. ..
  24. Sasser T, Lawrence G, Karunakaran S, Brown C, Fratti R. The yeast ATP-binding cassette (ABC) transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion. J Biol Chem. 2013;288:18300-10 pubmed publisher
    ..In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered...
  25. Alpadi K, Kulkarni A, Namjoshi S, Srinivasan S, Sippel K, Ayscough K, et al. Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion. Nat Commun. 2013;4:1704 pubmed publisher
    ..Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins. ..
  26. Balderhaar H, Lachmann J, Yavavli E, Bröcker C, Lürick A, Ungermann C. The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc Natl Acad Sci U S A. 2013;110:3823-8 pubmed publisher
    ..We therefore conclude that CORVET is a tethering complex that promotes fusion of Rab5-positive membranes and thus facilitates receptor down-regulation and recycling at the late endosome. ..
  27. Xu H, Wickner W. N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc Natl Acad Sci U S A. 2012;109:17936-41 pubmed publisher
    ..The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole ..
  28. Sasser T, Qiu Q, Karunakaran S, Padolina M, Reyes A, Flood B, et al. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem. 2012;287:2221-36 pubmed publisher
    ..These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion. ..
  29. Xu H, Wickner W. Bem1p is a positive regulator of the homotypic fusion of yeast vacuoles. J Biol Chem. 2006;281:27158-66 pubmed
    ..2005) Genes Dev. 19, 2606-2618), we did not find phosphorylation of Bem1p at Ser-72 to be required for Bem1p-stimulated fusion. Taken together, Bem1p is a positive regulator of lipid mixing during vacuole hemifusion and fusion. ..
  30. Kulkarni A, Alpadi K, Namjoshi S, Peters C. A tethering complex dimer catalyzes trans-SNARE complex formation in intracellular membrane fusion. Bioarchitecture. 2012;2:59-69 pubmed
    ..Here we report a novel finding that a HOPS tethering complex dimer catalyzes Rab GTPase-dependent formation of a topologically preferred QbQcR-Qa trans-SNARE complex. ..
  31. Xu H, Zick M, Wickner W, Jun Y. A lipid-anchored SNARE supports membrane fusion. Proc Natl Acad Sci U S A. 2011;108:17325-30 pubmed publisher
  32. Qiu Q, Fratti R. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci. 2010;123:3266-75 pubmed publisher
    ..Fusion could be rescued by adding the soluble SNARE Vam7p. However, Vam7p only activated the first round of nhx1? vacuole fusion...
  33. Yu J, Lemmon M. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem. 2001;276:44179-84 pubmed
    ..Our results establish that PtdIns-3-P, and not other phosphoinositides, is the target of all PX domains in S. cerevisiae and suggest a role for PX domains in assembly of multiprotein complexes at specific membrane surfaces. ..
  34. Miner G, Starr M, Hurst L, Sparks R, Padolina M, Fratti R. The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain. J Biol Chem. 2016;291:17651-63 pubmed publisher
    The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic ..
  35. Mattie S, McNally E, Karim M, Vali H, Brett C. How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell. 2017;28:309-321 pubmed publisher
  36. Cheever M, Kutateladze T, Overduin M. Increased mobility in the membrane targeting PX domain induced by phosphatidylinositol 3-phosphate. Protein Sci. 2006;15:1873-82 pubmed
    ..Phox homology (PX) domains are found in proteins that are integral players in endocytic pathways. For example, Vam7p is targeted by its PX domain to phosphatidylinositol 3-phosphate [PtdIns(3)P] in the yeast vacuole, where it ..