TPK3

Summary

Gene Symbol: TPK3
Description: cAMP-dependent protein kinase catalytic subunit TPK3
Alias: cAMP-dependent protein kinase catalytic subunit TPK3
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Tudisca V, Recouvreux V, Moreno S, Boy Marcotte E, Jacquet M, Portela P. Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur J Cell Biol. 2010;89:339-48 pubmed publisher
    ..work was to further characterize the complexity and specificity of the three different isoforms (Tpk1, Tpk2 and Tpk3) of the catalytic and regulatory (Bcy1) subunits of PKA in Saccharomyces cerevisiae...
  2. Leadsham J, Miller K, Ayscough K, Colombo S, Martegani E, Sudbery P, et al. Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci. 2009;122:706-15 pubmed publisher
    ..We also demonstrate for the first time that Whi2p-dependent regulation of cAMP-PKA signalling plays a physiological role in the differentiation of yeast colonies by facilitating elaboration of distinct zones of cell death. ..
  3. Popova Y, Thayumanavan P, Lonati E, Agrochão M, Thevelein J. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci U S A. 2010;107:2890-5 pubmed publisher
    ..Our results provide to the best of our knowledge the first insight into the molecular mechanism of a phosphate transceptor. ..
  4. Ramachandran V, Shah K, Herman P. The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation. Mol Cell. 2011;43:973-81 pubmed publisher
    ..This work therefore highlights the general relevance of RNP foci in quiescent cells, and provides a framework for the study of the many RNP assemblies that form in eukaryotic cells. ..
  5. Robertson L, Fink G. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 1998;95:13783-7 pubmed
    ..We demonstrate that they have dramatically different roles in pseudohyphal development: Tpk2 is essential, whereas Tpk3 inhibits. Tpk1 has no discernible effect...
  6. Toda T, Cameron S, Sass P, Zoller M, Wigler M. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987;50:277-87 pubmed
    We have isolated three genes (TPK1, TPK2, and TPK3) from the yeast S. cerevisiae that encode the catalytic subunits of the cAMP-dependent protein kinase...
  7. Chevtzoff C, Vallortigara J, Avéret N, Rigoulet M, Devin A. The yeast cAMP protein kinase Tpk3p is involved in the regulation of mitochondrial enzymatic content during growth. Biochim Biophys Acta. 2005;1706:117-25 pubmed
    ..Our study points to an important decrease in the cytochrome c content in the Deltatpk3 mitochondria, which leads to a decrease in the slipping process at the level of cytochrome-c-oxidase. ..
  8. Niles B, Joslin A, Fresques T, Powers T. TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation. Cell Rep. 2014;6:541-52 pubmed publisher
    ..Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability. ..
  9. Mazon M, Behrens M, Morgado E, Portillo F. Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene. Eur J Biochem. 1993;213:501-6 pubmed
    Three genes TPK1, TPK2 and TPK3 encode in Saccharomyces cerevisiae distinct catalytic subunits of cAMP-dependent protein kinase (cAPK)...

More Information

Publications38

  1. Bolte M, Dieckhoff P, Krause C, Braus G, Irniger S. Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Microbiology. 2003;149:1205-16 pubmed
    ..Furthermore, it is shown that the three PKAs in yeast, Tpk1, Tpk2 and Tpk3, have redundant functions in regulating APC/C in response to glucose medium...
  2. Demlow C, Fox T. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics. 2003;165:961-74 pubmed
    ..signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p ..
  3. Pan X, Heitman J. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol. 2002;22:3981-93 pubmed
    ..Our studies illustrate in molecular detail how protein kinase A combinatorially effects a key developmental switch. Similar mechanisms may operate in pathogenic fungi and more complex multicellular eukaryotic organisms. ..
  4. Sadeh A, Movshovich N, Volokh M, Gheber L, Aharoni A. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Mol Biol Cell. 2011;22:3127-38 pubmed publisher
    ..Such negative regulation is crucial to minimize the cost of uncontrolled stress response gene expression and ensures a high growth rate in the absence of stress. ..
  5. Kim J, Johnston M. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem. 2006;281:26144-9 pubmed
    ..Thus, two different glucose signal transduction pathways converge on Rgt1 to regulate expression of glucose transporters. ..
  6. Schepers W, Van Zeebroeck G, Pinkse M, Verhaert P, Thevelein J. In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J Biol Chem. 2012;287:44130-42 pubmed publisher
    ..Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo...
  7. Niles B, Powers T. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell. 2014;25:3962-72 pubmed publisher
    ..flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts ..
  8. Garrett S, Broach J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. 1989;3:1336-48 pubmed
    ..reveal that it is not essential for growth and that its loss confers growth to a strain deleted for tpk1, tpk2, and tpk3, the structural genes for the catalytic subunit of the cAMP-dependent protein kinase...
  9. Chen R, Thorner J. Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae. Genetics. 2010;185:855-70 pubmed publisher
    ..Thus, although there are similarities between haploids and diploids, cell type-specific differences clearly alter the balance of the signaling inputs required to elicit the various nutrient limitation-evoked cellular behaviors. ..
  10. Tudisca V, Simpson C, Castelli L, Lui J, Hoyle N, Moreno S, et al. PKA isoforms coordinate mRNA fate during nutrient starvation. J Cell Sci. 2012;125:5221-32 pubmed publisher
    ..Previously we demonstrated that PKA catalytic isoforms Tpk2 and Tpk3 localise with processing and stress bodies in Saccharomyces cerevisiae...
  11. Legesse Miller A, Zhang S, Santiago Tirado F, Van Pelt C, Bretscher A. Regulated phosphorylation of budding yeast's essential myosin V heavy chain, Myo2p. Mol Biol Cell. 2006;17:1812-21 pubmed
    ..These results suggest that in yeast, Myo2p is subject to phosphoregulation involving a PKA-related signaling pathway. ..
  12. Trott A, Shaner L, Morano K. The molecular chaperone Sse1 and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae. Genetics. 2005;170:1009-21 pubmed
    ..Together these results demonstrate that the Sse1 chaperone and the growth control kinase Sch9 independently contribute to regulation of PKA signaling. ..
  13. Mizunuma M, Tsubakiyama R, Ogawa T, Shitamukai A, Kobayashi Y, Inai T, et al. Ras/cAMP-dependent protein kinase (PKA) regulates multiple aspects of cellular events by phosphorylating the Whi3 cell cycle regulator in budding yeast. J Biol Chem. 2013;288:10558-66 pubmed publisher
    ..Thus, PKA modulated the function of Whi3 by phosphorylation, thus implicating PKA-mediated modulation of Whi3 in multiple cellular events. ..
  14. Mösch H, Kübler E, Krappmann S, Fink G, Braus G. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell. 1999;10:1325-35 pubmed
  15. Haesendonckx S, Tudisca V, Voordeckers K, Moreno S, Thevelein J, Portela P. The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Biochem J. 2012;448:307-20 pubmed publisher
    ..Saccharomyces cerevisiae contains three PKA catalytic subunits, TPK1, TPK2 and TPK3. We demonstrate that Pkh [PKB (protein kinase B)-activating kinase homologue] protein kinases phosphorylate the ..
  16. Stephan J, Yeh Y, Ramachandran V, Deminoff S, Herman P. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A. 2009;106:17049-54 pubmed publisher
    ..In all, our data indicate that the PKA and Tor pathways function independently to control autophagy in S. cerevisiae, and that the Atg1/Atg13 kinase complex is a key site of signal integration within this degradative pathway. ..
  17. Casado C, González A, Platara M, Ruiz A, Arino J. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem J. 2011;438:523-33 pubmed publisher
    ..However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function. ..
  18. Malcher M, Schladebeck S, Mösch H. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics. 2011;187:717-30 pubmed publisher
    ..In summary, our data suggest that Yak1 is at the center of a regulatory cascade for adhesive growth and stress resistance, which is under dual control of Whi3 and the PKA subunit Tpk1. ..
  19. Leadsham J, Gourlay C. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol. 2010;11:92 pubmed publisher
    ..The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in ..
  20. Peeters T, Louwet W, Geladé R, Nauwelaers D, Thevelein J, Versele M. Kelch-repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A. 2006;103:13034-9 pubmed
    ..Importantly, we show that Krh1/2 also enhance the association between mouse R and C subunits, suggesting that Krh control of PKA has been evolutionarily conserved. ..
  21. Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 1998;12:2943-55 pubmed
    ..Taken together, these results place Rim15p immediately downstream and under negative control of cAPK and define a positive regulatory role of Rim15p for entry into both meiosis and stationary phase. ..
  22. Ward M, Garrett S. Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol Cell Biol. 1994;14:5619-27 pubmed
    ..Overexpression of SOK1, like lesions in YAK1, also restores growth to a strain (tpk1 tpk2 tpk3) lacking all A kinase activity...
  23. Dong J, Bai X. The membrane localization of Ras2p and the association between Cdc25p and Ras2-GTP are regulated by protein kinase A (PKA) in the yeast Saccharomyces cerevisiae. FEBS Lett. 2011;585:1127-34 pubmed publisher
    ..These results suggest that Ras2p localization and Ras2-GEF activity of Cdc25p play roles in the feedback regulation of Ras2p in the Ras-cAMP pathway. ..
  24. Chevtzoff C, Yoboue E, Galinier A, Casteilla L, Daignan Fornier B, Rigoulet M, et al. Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. J Biol Chem. 2010;285:1733-42 pubmed publisher
    ..It is the first time that a redox sensitivity of the transcription factors involved in yeast mitochondrial biogenesis is shown. Such a process could be seen as a mitochondria quality control process. ..
  25. Makanae K, Kintaka R, Makino T, Kitano H, Moriya H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res. 2013;23:300-11 pubmed publisher
    ..The results obtained in this study will provide basic knowledge about the physiology of chromosomal abnormalities and the evolution of chromosomal composition. ..
  26. Zurita Martinez S, Cardenas M. Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell. 2005;4:63-71 pubmed
  27. Gancedo J, Flores C, Gancedo C. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae. Biochim Biophys Acta. 2015;1850:1362-7 pubmed publisher
    ..Repression is dependent on PKA activity, but not on any specific Tpk isoenzyme. The results show that previously overlooked regulatory elements, such as Rgt1 and Tpks, participate in the control of SUC2 expression in S.cerevisiae. ..
  28. Vlahakis A, Lopez Muniozguren N, Powers T. Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy. J Cell Biol. 2016;215:779-788 pubmed
    ..These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation. ..
  29. Du W, Ayscough K. Methyl beta-cyclodextrin reduces accumulation of reactive oxygen species and cell death in yeast. Free Radic Biol Med. 2009;46:1478-87 pubmed publisher
    ..Finally, we demonstrate that addition of methyl beta-cyclodextrin to wild-type cells can act to protect cells from acute oxidative stress caused by addition of hydrogen peroxide. ..