Gene Symbol: SEC23
Description: GTPase-activating protein SEC23
Alias: GTPase-activating protein SEC23
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Springer S, Schekman R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science. 1998;281:698-700 pubmed
    ..The data suggest that transmembrane proteins can be taken up into COPII vesicles by direct interactions with the coat proteins and may play a structural role in the assembly of the COPII coat complex...
  2. Supek F, Madden D, Hamamoto S, Orci L, Schekman R. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol. 2002;158:1029-38 pubmed
    ..recruit pure Sec16p to liposomes, PC/PE liposomes bind Sar1p-GTP, which stimulates the association of Sec16p and Sec23/24p...
  3. Kuehn M, Herrmann J, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998;391:187-90 pubmed
    ..and soluble cargo proteins destined for transport from the ER in complexes formed in the presence of Sar1 and Sec23/24, a subset of the COPII components, and GTP or GMP-PNP...
  4. Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L, Schekman R. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol. 2000;151:973-84 pubmed
    ..transport vesicles requires three cytosolic components, a small GTPase, Sar1p, and two heterodimeric complexes, Sec23/24p and Sec13/31p, which comprise the COPII coat...
  5. Sato K, Nakano A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol. 2005;12:167-74 pubmed
    ..capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p...
  6. Miller E, Beilharz T, Malkus P, Lee M, Hamamoto S, Orci L, et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003;114:497-509 pubmed
    ..Together, our data support a model whereby Sec24p proteins contain multiple independent cargo binding domains that allow for recognition of a diverse set of sorting signals...
  7. Yoshihisa T, Barlowe C, Schekman R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science. 1993;259:1466-8 pubmed
    ..Also, activation was thermolabile in pure samples of Sec23p that were isolated from two independent sec23 mutant strains...
  8. Bi X, Corpina R, Goldberg J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature. 2002;419:271-7 pubmed
    ..reticulum by the stepwise recruitment of three cytosolic components: Sar1-GTP to initiate coat formation, Sec23/24 heterodimer to select SNARE and cargo molecules, and Sec13/31 to induce coat polymerization and membrane ..
  9. Barlowe C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J Cell Biol. 1997;139:1097-108 pubmed
    ..Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function. ..

More Information


  1. Saito Nakano Y, Nakano A. Sed4p functions as a positive regulator of Sar1p probably through inhibition of the GTPase activation by Sec23p. Genes Cells. 2000;5:1039-48 pubmed
    ..On the contrary, over-expression of SED4 aggravates the ts growth of sec23 cells. The cytoplasmic domain of Sed4p weakly inhibits the GTPase-activating (GAP) activity of Sec23p toward Sar1p...
  2. Cai H, Yu S, Menon S, Cai Y, Lazarova D, Fu C, et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature. 2007;445:941-4 pubmed
    ..Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2)...
  3. Peng R, De Antoni A, Gallwitz D. Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J Biol Chem. 2000;275:11521-8 pubmed
    ..The data presented strongly suggest that the Sec24p-related proteins function as COPII components. ..
  4. Espenshade P, Gimeno R, Holzmacher E, Teung P, Kaiser C. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol. 1995;131:311-24 pubmed
    ..Together, these results suggest that Sec16p engages in multiple protein-protein interactions both on the ER membrane and as part of the coat of a completed vesicle...
  5. Gimeno R, Espenshade P, Kaiser C. COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell. 1996;7:1815-23 pubmed
    ..These findings define binding to Sec16p as a new function for Sec24p and support the idea that Sec16p organizes assembly of the COPII coat...
  6. Shaywitz D, Espenshade P, Gimeno R, Kaiser C. COPII subunit interactions in the assembly of the vesicle coat. J Biol Chem. 1997;272:25413-6 pubmed
    ..We propose that Sec16p organizes the assembly of a coat that is stabilized both by the interaction of Sec31p with Sec23p and Sec24p and by the interaction of these three components with Sec16p...
  7. Yorimitsu T, Sato K. Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol Biol Cell. 2012;23:2930-42 pubmed publisher
    ..We show that Sec16 interacts with Sec23 and Sar1 through its C-terminal conserved region and hinders the ability of Sec31 to stimulate Sec23 GAP activity ..
  8. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 1994;77:895-907 pubmed
    ..Because the overall cycle of budding driven by these two types of coats appears mechanistically similar, we propose that the coat structures be called COPI and COPII. ..
  9. Miller E, Antonny B, Hamamoto S, Schekman R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 2002;21:6105-13 pubmed
    ..Our data suggest that the principle role of Sec24p is to discriminate cargo molecules for incorporation into COPII vesicles...
  10. Kurihara T, Hamamoto S, Gimeno R, Kaiser C, Schekman R, Yoshihisa T. Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell. 2000;11:983-98 pubmed
    ..Overproduction of Sec24p suppressed the temperature sensitivity of sec23-2, and overproduction of both Sec24p and Sec23p suppressed the temperature sensitivity of sec16-2...
  11. Murakami A, Kimura K, Nakano A. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J Biol Chem. 1999;274:3804-10 pubmed
    ..These observations suggest that the reduction of the kinase activity in the mutant protein is important for the suppression of sec12. We propose that Hrr25p negatively regulates the vesicle budding from the ER. ..
  12. Roberg K, Bickel S, Rowley N, Kaiser C. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics. 1997;147:1569-84 pubmed
    ..The LST7 gene encodes a novel protein. Together, these data indicate that SEC13, LST4, LST7, and LST8 function in the regulated delivery of Gap1p to the cell surface, perhaps as components of a post-Golgi secretory-vesicle coat. ..
  13. Salama N, Chuang J, Schekman R. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol Biol Cell. 1997;8:205-17 pubmed
    ..overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1...
  14. Oka T, Nakano A. Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. J Cell Biol. 1994;124:425-34 pubmed
    ..The sec23 mutant is defective in activation of Sar1 GTPase (Yoshihisa, T., C. Barlowe, and R. Schekman. 1993. Science (Wash...
  15. Gimeno R, Espenshade P, Kaiser C. SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J Cell Biol. 1995;131:325-38 pubmed
    ..Extensive genetic interactions between SAR1, SED4, and SEC16 show close functional links between these proteins and imply that they might function together as a multisubunit complex on the ER membrane. ..
  16. Roberg K, Crotwell M, Espenshade P, Gimeno R, Kaiser C. LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol. 1999;145:659-72 pubmed
    ..Together, these findings suggest that a specialized form of the COPII coat subunit, with Lst1p in place of Sec24p, is used for the efficient packaging of Pma1p into vesicles derived from the ER. ..
  17. Mossessova E, Bickford L, Goldberg J. SNARE selectivity of the COPII coat. Cell. 2003;114:483-95 pubmed
    ..we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII. The A site binds to the YNNSNPF motif of Sed5...
  18. Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D, HAY J, et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature. 2011;473:181-6 pubmed publisher
    ..These events are conserved in mammalian cells. ..
  19. Matsuoka K, Schekman R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 2000;20:417-28 pubmed
    ..Therefore, both generation of coated vesicles and protein sorting into the vesicles can be reproduced with liposomes and purified proteins. ..
  20. Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell. 2001;12:3690-702 pubmed
    ..Three other coatmer protein (COPII) mutants, sec16, sec23, and sec24, were also defective in autophagy...
  21. Chen C, Calero M, DeRegis C, Heidtman M, Barlowe C, Collins R. Genetic analysis of yeast Yip1p function reveals a requirement for Golgi-localized rab proteins and rab-Guanine nucleotide dissociation inhibitor. Genetics. 2004;168:1827-41 pubmed
  22. Belden W, Barlowe C. Distinct roles for the cytoplasmic tail sequences of Emp24p and Erv25p in transport between the endoplasmic reticulum and Golgi complex. J Biol Chem. 2001;276:43040-8 pubmed
    ..The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER. ..
  23. Kodera C, Yorimitsu T, Sato K. Sec23 homolog Nel1 is a novel GTPase-activating protein for Sar1 but does not function as a subunit of the coat protein complex II (COPII) coat. J Biol Chem. 2014;289:21423-32 pubmed publisher
    ..b>Sec23 is well known as a structural component of the COPII coat and as a GTPase-activating protein (GAP) for Sar1...
  24. Votsmeier C, Gallwitz D. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. EMBO J. 2001;20:6742-50 pubmed
    ..Our study demonstrates for the first time that, in yeast, a di-acidic sequence motif can act as a sorting signal for cargo selection during the formation of transport vesicles at the ER by direct binding to COPII component(s). ..
  25. Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, et al. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. elife. 2016;5: pubmed publisher
    ..We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance. ..
  26. Taxis C, Vogel F, Wolf D. ER-golgi traffic is a prerequisite for efficient ER degradation. Mol Biol Cell. 2002;13:1806-18 pubmed
  27. Sato K, Nakano A. Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13:2518-32 pubmed
    ..We propose that Emp46p and Emp47p are required for the export of specific glycoprotein cargo from the endoplasmic reticulum. ..
  28. Cleves A, Novick P, Bankaitis V. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol. 1989;109:2939-50 pubmed
    ..On this basis, we suggest that SAC1p may represent one aspect of the mechanism whereby secretory and cytoskeletal activities are coordinated, so that proper spatial regulation of secretion might be achieved. ..
  29. Cohen M, Stutz F, Belgareh N, Haguenauer Tsapis R, Dargemont C. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol. 2003;5:661-7 pubmed
    ..This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and ..
  30. Bacon R, Salminen A, Ruohola H, Novick P, Ferro Novick S. The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J Cell Biol. 1989;109:1015-22 pubmed
    ..We have also established genetic interactions between ypt1 and a subset of the other genes required for transport to and through the Golgi apparatus. ..
  31. Bhandari D, Zhang J, Menon S, Lord C, Chen S, Helm J, et al. Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits. Mol Biol Cell. 2013;24:2727-38 pubmed publisher
    ..In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex. ..
  32. Ossareh Nazari B, Cohen M, Dargemont C. The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23. Exp Cell Res. 2010;316:3351-7 pubmed publisher
    Ubp3/Bre5 complex is a substrate-specific deubiquitylating enzyme which mediates deubiquitylation of Sec23, a component of the COPII complex involved in the transport between endoplasmic reticulum and Golgi apparatus...
  33. Sato M, Sato K, Nakano A. Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun. 2002;296:560-7 pubmed
    ..The overexpression of IRE1 suppresses the sec mutants defective in vesicle budding from the ER but not others, highlighting a close relationship between the ER exit and the UPR. ..
  34. Luo Z, Gallwitz D. Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. J Biol Chem. 2003;278:791-9 pubmed
    ..The results obtained indicate that Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking. ..
  35. Antonny B, Gounon P, Schekman R, Orci L. Self-assembly of minimal COPII cages. EMBO Rep. 2003;4:419-24 pubmed
    The small G-protein Sar1 and the cytosolic complexes Sec23/24 and Sec13/31 associate sequentially on endoplasmic reticulum membranes to form a protein coat named COPII, which drives the formation of transport vesicles...
  36. Behnia R, Barr F, Flanagan J, Barlowe C, Munro S. The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol. 2007;176:255-61 pubmed
    ..In addition, Grh1 interacts with the Sec23/24 component of the COPII coat...
  37. Barlowe C. Three-dimensional structure of a COPII prebudding complex. Dev Cell. 2002;3:467-8 pubmed
    ..Crystallographic analysis of a Sec23/24-Sar1 prebudding complex of COPII now provides a molecular view of this GTPase-directed coat assembly mechanism.
  38. He X, Qian W, Wang Z, Li Y, Zhang J. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet. 2010;42:272-6 pubmed publisher
    ..We offer mechanistic explanations of these findings and experimentally validate them for 61 S. cerevisiae gene pairs. ..
  39. Rein U, Andag U, Duden R, Schmitt H, Spang A. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol. 2002;157:395-404 pubmed
    ..The mechanisms by which v-SNAREs interact with COPI and COPII coat proteins seem to be different and may play a key role in determining specificity in vesicle budding...
  40. Antebi A, Fink G. The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell. 1992;3:633-54 pubmed
    ..Some of these interactions are modulated by changes in external Ca2+ concentrations. These results imply a global role for Ca2+ in the proper function of components governing transit and processing through the secretory pathway. ..
  41. Powers J, Barlowe C. Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell. 2002;13:880-91 pubmed
    ..Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo. ..
  42. Kim D, Massey T, Sacher M, Pypaert M, Ferro Novick S. Sgf1p, a new component of the Sec34p/Sec35p complex. Traffic. 2001;2:820-30 pubmed
    ..Although an earlier study suggested that Sec34p (Grd20p) is not required for protein secretion, we show here that the sec34-2 and sec35-1 mutations lead to a pleiotropic block in the secretion of all proteins into the growth medium. ..
  43. Peng R, Grabowski R, De Antoni A, Gallwitz D. Specific interaction of the yeast cis-Golgi syntaxin Sed5p and the coat protein complex II component Sec24p of endoplasmic reticulum-derived transport vesicles. Proc Natl Acad Sci U S A. 1999;96:3751-6 pubmed
    ..Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi. ..
  44. Liang S, Lacroute F, Kepes F. Multicopy STS1 restores both protein transport and ribosomal RNA stability in a new yeast sec23 mutant allele. Eur J Cell Biol. 1993;62:270-81 pubmed
    ..We demonstrate that the single mutation conferring thermosensitivity and lomofungin resistance is heteroallelic to sec23-1. This new allele of sec23 is designated sec23-11...
  45. Lederkremer G, Cheng Y, Petre B, Vogan E, Springer S, Schekman R, et al. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci U S A. 2001;98:10704-9 pubmed
    ..Putting together the architecture of these Sec complexes with the interactions between their subunits and the appearance of the coat in COPII-coated vesicles, we present a model for COPII coat organization...
  46. Heidtman M, Chen C, Collins R, Barlowe C. A role for Yip1p in COPII vesicle biogenesis. J Cell Biol. 2003;163:57-69 pubmed
    ..We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis. ..
  47. Gilstring C, Melin Larsson M, Ljungdahl P. Shr3p mediates specific COPII coatomer-cargo interactions required for the packaging of amino acid permeases into ER-derived transport vesicles. Mol Biol Cell. 1999;10:3549-65 pubmed
  48. Higashio H, Kimata Y, Kiriyama T, Hirata A, Kohno K. Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum. J Biol Chem. 2000;275:17900-8 pubmed
  49. Tan D, Cai Y, Wang J, Zhang J, Menon S, Chou H, et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc Natl Acad Sci U S A. 2013;110:19432-7 pubmed publisher
    ..We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment...
  50. Higashio H, Kohno K. A genetic link between the unfolded protein response and vesicle formation from the endoplasmic reticulum. Biochem Biophys Res Commun. 2002;296:568-74 pubmed
    ..These findings suggest that the activation of the UPR affects ER-to-Golgi transport via stimulation of COPII vesicle formation from the ER. ..
  51. Copic A, Latham C, Horlbeck M, D Arcangelo J, Miller E. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science. 2012;335:1359-62 pubmed publisher
    ..Thus, Sec13p may rigidify the COPII cage and increase its membrane-bending capacity; this function could be bypassed when a bst mutation renders the membrane more deformable. ..
  52. Kakoi S, Yorimitsu T, Sato K. COPII machinery cooperates with ER-localized Hsp40 to sequester misfolded membrane proteins into ER-associated compartments. Mol Biol Cell. 2013;24:633-42 pubmed publisher
    ..COPII components and ER-associated Hsp40, Hlj1p, act in the same pathway to sequester EGFP-CFTR into ERACs. Our findings point to an as-yet-undefined role of COPII proteins in the formation of ERACs. ..
  53. Ossig R, Dascher C, Trepte H, Schmitt H, Gallwitz D. The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport. Mol Cell Biol. 1991;11:2980-93 pubmed
    ..Sly2p is shown to be an integral membrane protein. ..
  54. Chabane S, Gachet E, Kepes F. Over-expression of the yeast BFR2 gene partially suppresses the growth defects induced by Brefeldin A and by four ER-to-Golgi mutations. Curr Genet. 1998;33:21-8 pubmed
    ..four mutants blocked at the step of budding or docking of small vesicles en route to the Golgi (sec13-1, sec16-2, sec23-1, ypt1-1)...