RPN8

Summary

Gene Symbol: RPN8
Description: proteasome regulatory particle lid subunit RPN8
Alias: proteasome regulatory particle lid subunit RPN8
Species: Saccharomyces cerevisiae S288c
Products:     RPN8

Top Publications

  1. Pathare G, Nagy I, Sledź P, Anderson D, Zhou H, Pardon E, et al. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci U S A. 2014;111:2984-9 pubmed publisher
    ..Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody...
  2. Lander G, Estrin E, Matyskiela M, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 2012;482:186-91 pubmed publisher
    ..We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes. ..
  3. Matyskiela M, Lander G, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol. 2013;20:781-8 pubmed publisher
    ..Notably, Rpn11 moves from an occluded position to directly above the central pore, thus facilitating substrate deubiquitination concomitant with translocation. ..
  4. Kimura Y, Saeki Y, Yokosawa H, Polevoda B, Sherman F, Hirano H. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys. 2003;409:341-8 pubmed
    ..nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates...
  5. Glickman M, Rubin D, Fried V, Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol. 1998;18:3149-62 pubmed
    ..Overall, regulatory particles from yeasts and mammals are remarkably similar, suggesting that the specific mechanistic features of the proteasome have been closely conserved over the course of evolution. ..
  6. Tomko R, Hochstrasser M. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell. 2014;53:433-43 pubmed publisher
    ..Thus, although Sem1 is a stoichiometric component of the mature proteasome, it has a distinct, chaperone-like function specific to early stages of proteasome assembly. ..
  7. Estrin E, Lopéz Blanco J, Chacon P, Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure. 2013;21:1624-35 pubmed publisher
    ..Finally, we predict that the assembly of the COP9 signalosome depends on a similar helical bundle. ..
  8. Tomko R, Hochstrasser M. Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell. 2011;44:907-17 pubmed publisher
    ..Rpn12 incorporation thus links proper lid assembly to subsequent assembly steps. ..
  9. Chandra A, Chen L, Madura K. Synthetic lethality of rpn11-1 rpn10? is linked to altered proteasome assembly and activity. Curr Genet. 2010;56:543-57 pubmed publisher
    ..Based on these findings, we propose that the lethality of rpn11-1 rpn10? results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding. ..

More Information

Publications38

  1. Funakoshi M, Tomko R, Kobayashi H, Hochstrasser M. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell. 2009;137:887-99 pubmed publisher
    ..Our results demonstrate that proteasomal RP biogenesis requires multiple, functionally overlapping chaperones and suggest a model in which subunits form specific subcomplexes that then assemble into the base. ..
  2. Worden E, Padovani C, Martin A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol. 2014;21:220-7 pubmed publisher
    ..crystal structures of Zn(2+)-free and Zn(2+)-bound Saccharomyces cerevisiae Rpn11 in an MPN-domain heterodimer with Rpn8. The Rpn11-Rpn8 interaction occurs via two distinct interfaces that may be conserved in related MPN-domain ..
  3. Isono E, Saeki Y, Yokosawa H, Toh e A. Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J Biol Chem. 2004;279:27168-76 pubmed
    ..From these results, we concluded that Rpn7 is required for the integrity of the 26 S complex by establishing a correct lid structure. ..
  4. Sone T, Saeki Y, Toh e A, Yokosawa H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J Biol Chem. 2004;279:28807-16 pubmed
    ..The results suggest that Sem1, possibly hDSS1, is a novel subunit of the 26 S proteasome and plays a role in ubiquitin-dependent proteolysis. ..
  5. Worden E, Dong K, Martin A. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome. Mol Cell. 2017;67:799-811.e8 pubmed publisher
    ..The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. ..
  6. Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol. 2000;20:4691-8 pubmed
    ..Purified proteasomes can ligate ubiquitin to a test substrate without the addition of exogenous E2 protein, suggesting that the ubiquitylation of some proteolytic substrates might be directly coupled to degradation by the proteasome. ..
  7. Sun Z, Bhanu M, Allan M, Arthanari H, Wagner G, Hanna J. Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS ONE. 2016;11:e0163660 pubmed publisher
    ..These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins. ..
  8. Saeki Y, Toh e A, Kudo T, Kawamura H, Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell. 2009;137:900-13 pubmed publisher
    ..Our results indicate that the RP assembly is a highly organized and elaborate process orchestrated by multiple proteasome-dedicated chaperones. ..
  9. Chuang S, Chen L, Lambertson D, Anand M, Kinzy T, Madura K. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol. 2005;25:403-13 pubmed
    ..Our findings provide a mechanistic foundation for defining how cellular proteins are degraded cotranslationally. ..
  10. Taverner T, Hernandez H, Sharon M, Ruotolo B, Matak Vinkovic D, Devos D, et al. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc Chem Res. 2008;41:617-27 pubmed publisher
    ..Overall therefore this mass spectrometry and homology modeling approach has given significant insight into the structure of two previously intractable protein complexes and as such has broad application in structural biology. ..
  11. Ding Z, Fu Z, Xu C, Wang Y, Wang Y, Li J, et al. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res. 2017;27:373-385 pubmed publisher
    ..Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome. ..
  12. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 2012;46:105-10 pubmed publisher
    ..Thus, the EGOC-TORC1 signaling module samples, via the LeuRS-intrinsic editing domain, the fidelity of tRNA(Leu) aminoacylation as a proxy for leucine availability. ..
  13. Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci U S A. 2016;113:2642-7 pubmed publisher
    ..Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. ..
  14. Brandina I, Smirnov A, Kolesnikova O, Entelis N, Krasheninnikov I, Martin R, et al. tRNA import into yeast mitochondria is regulated by the ubiquitin-proteasome system. FEBS Lett. 2007;581:4248-54 pubmed
    ..This result suggests a functional link between UPS and tRNA mitochondrial import in yeast and indicates on the existence of negative and positive import regulators. ..
  15. Desany B, Alcasabas A, Bachant J, Elledge S. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 1998;12:2956-70 pubmed
    ..We propose that this checkpoint pathway plays an important role in the maintenance of DNA synthetic capabilities when DNA replication is stressed. ..
  16. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405-39 pubmed
    ..This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves. ..
  17. Yu Z, Livnat Levanon N, Kleifeld O, Mansour W, Nakasone M, Castaneda C, et al. Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep. 2015;35: pubmed publisher
    ..Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) ..
  18. Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, Vierstra R, et al. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci. 1998;23:244-5 pubmed
  19. Peters L, Karmon O, David Kadoch G, Hazan R, Yu T, Glickman M, et al. The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet. 2015;11:e1005178 pubmed publisher
    ..Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments. ..
  20. Saeki Y, Isono E, Toh e A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 2005;399:215-27 pubmed
    ..In this communication, we describe that Sic1 was successfully ubiquitinated by the PY motif-insertion method and demonstrate that Sic1 thus ubiquitinated was degraded by the purified yeast 26S proteasome. ..
  21. Sharon M, Taverner T, Ambroggio X, Deshaies R, Robinson C. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006;4:e267 pubmed
    ..More generally, the results highlight the potential of mass spectrometry to add crucial insight into the structural organization of an endogenous, wild-type complex. ..
  22. Tomko R, Taylor D, Chen Z, Wang H, Rappsilber J, Hochstrasser M. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell. 2015;163:432-44 pubmed publisher
    ..Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. ..
  23. Dambacher C, Worden E, Herzik M, Martin A, Lander G. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. elife. 2016;5:e13027 pubmed publisher
  24. Geng F, Tansey W. Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci U S A. 2012;109:6060-5 pubmed publisher
    ..We find that proteasome subunits Rpt1, Rpt4, Rpn8, Rpn12, Pre6, and Pre10 are recruited to GAL10 rapidly upon galactose induction...
  25. Paci A, Liu P, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem. 2016;291:11761-75 pubmed publisher
    ..we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted...
  26. Rinaldi T, Pick E, Gambadoro A, Zilli S, Maytal Kivity V, Frontali L, et al. Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem J. 2004;381:275-85 pubmed
    ..We find that overexpression of WT (wild-type) RPN8, encoding a paralogous subunit that does not contain the catalytic MPN+ motif, corrects proteasome conformations ..
  27. Laporte D, Salin B, Daignan Fornier B, Sagot I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol. 2008;181:737-45 pubmed publisher
    ..Finally, we observe conserved formation and mobilization of these PSGs in the evolutionary distant yeast Schizosaccharomyces pombe. This conservation implies a broad significance for these proteasome reserves. ..
  28. Mansour W, Nakasone M, von Delbrück M, Yu Z, Krutauz D, Reis N, et al. Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6. J Biol Chem. 2015;290:4688-704 pubmed publisher
    ..The reduced ability to disassemble homogeneous Lys(48)-linked chains longer than 4 Ub units may prolong residency time on the proteasome. ..
  29. Marshall R, McLoughlin F, Vierstra R. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone. Cell Rep. 2016;16:1717-1732 pubmed publisher
    ..Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes. ..