RPN12

Summary

Gene Symbol: RPN12
Description: proteasome regulatory particle lid subunit RPN12
Alias: NIN1, proteasome regulatory particle lid subunit RPN12
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Sone T, Saeki Y, Toh e A, Yokosawa H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J Biol Chem. 2004;279:28807-16 pubmed
    ..The results suggest that Sem1, possibly hDSS1, is a novel subunit of the 26 S proteasome and plays a role in ubiquitin-dependent proteolysis. ..
  2. Chandra A, Chen L, Liang H, Madura K. Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors. J Biol Chem. 2010;285:8330-9 pubmed publisher
    ..Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome. ..
  3. Lander G, Estrin E, Matyskiela M, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 2012;482:186-91 pubmed publisher
    ..We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes. ..
  4. Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol. 2005;25:5355-62 pubmed
    ..These results establish a role for Ddi1 in the degradation of a natural ubiquitylated substrate. The specific interaction between Ho and Ddi1 identifies an additional function associated with DNA damage involved in its degradation. ..
  5. Chandra A, Chen L, Madura K. Synthetic lethality of rpn11-1 rpn10? is linked to altered proteasome assembly and activity. Curr Genet. 2010;56:543-57 pubmed publisher
    ..Based on these findings, we propose that the lethality of rpn11-1 rpn10? results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding. ..
  6. Funakoshi M, Tomko R, Kobayashi H, Hochstrasser M. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell. 2009;137:887-99 pubmed publisher
    ..Our results demonstrate that proteasomal RP biogenesis requires multiple, functionally overlapping chaperones and suggest a model in which subunits form specific subcomplexes that then assemble into the base. ..
  7. Tomko R, Hochstrasser M. Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell. 2011;44:907-17 pubmed publisher
    ..We report several lid intermediates, including the free Rpn12 subunit and a lid particle (LP) containing the remaining eight subunits, LP2...
  8. Glickman M, Rubin D, Fried V, Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol. 1998;18:3149-62 pubmed
    ..Of the remaining 11 subunits that we have identified (Rpn1 to Rpn3 and Rpn5 to Rpn12), 8 are encoded by previously described genes and 3 are encoded by genes not previously characterized for yeasts...
  9. Estrin E, Lopéz Blanco J, Chacon P, Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure. 2013;21:1624-35 pubmed publisher
    ..We show that the helical bundle serves as a hub through which the last-added subunit Rpn12 monitors proper lid assembly before incorporation into the proteasome...

More Information

Publications43

  1. Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci U S A. 2016;113:2642-7 pubmed publisher
    ..Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. ..
  2. Bailly E, Reed S. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol. 1999;19:6872-90 pubmed
    ..In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit...
  3. Zuin A, Bichmann A, Isasa M, Puig Sàrries P, Díaz L, Crosas B. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J. 2015;472:353-65 pubmed publisher
    ..Interestingly, Rpn10-ubiquitin, with an inactivated ubiquitin-interacting motif (UIM), and Dsk2(I45S), with an inactive ubiquitin-like domain (UBL), show temperature-dependent phenotypes with multiple functional interactions. ..
  4. Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003;22:3557-67 pubmed
    ..Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome. ..
  5. Tomko R, Taylor D, Chen Z, Wang H, Rappsilber J, Hochstrasser M. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell. 2015;163:432-44 pubmed publisher
    ..Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving ..
  6. Ding Z, Fu Z, Xu C, Wang Y, Wang Y, Li J, et al. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res. 2017;27:373-385 pubmed publisher
    ..Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome. ..
  7. Yu Z, Livnat Levanon N, Kleifeld O, Mansour W, Nakasone M, Castaneda C, et al. Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep. 2015;35: pubmed publisher
    ..Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1...
  8. Peters L, Karmon O, David Kadoch G, Hazan R, Yu T, Glickman M, et al. The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet. 2015;11:e1005178 pubmed publisher
    ..Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments. ..
  9. Romero Perez L, Chen L, Lambertson D, Madura K. Sts1 can overcome the loss of Rad23 and Rpn10 and represents a novel regulator of the ubiquitin/proteasome pathway. J Biol Chem. 2007;282:35574-82 pubmed
    ..Despite these proteolytic defects, overall proteasome activity was increased in sts1-2. We propose that Sts1 is a new regulatory factor in the ubiquitin/proteasome pathway that controls the turnover of proteasome substrates...
  10. Laporte D, Salin B, Daignan Fornier B, Sagot I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol. 2008;181:737-45 pubmed publisher
    ..Finally, we observe conserved formation and mobilization of these PSGs in the evolutionary distant yeast Schizosaccharomyces pombe. This conservation implies a broad significance for these proteasome reserves. ..
  11. Fujimuro M, Tanaka K, Yokosawa H, Toh e A. Son1p is a component of the 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett. 1998;423:149-54 pubmed
    A son1 mutant was isolated as a mutant showing synthetic lethality with nin1-1 which is defective in the p31 component of the regulatory subunit of the yeast 26S proteasome...
  12. Saeki Y, Toh e A, Yokosawa H. Rapid isolation and characterization of the yeast proteasome regulatory complex. Biochem Biophys Res Commun. 2000;273:509-15 pubmed
    ..In contrast with the previously reported result showing that Rpn10, a multiubiquitin chain binding subunit, is a component of the base complex, we present evidence that the lid complex isolated from wild-type yeast contains Rpn10. ..
  13. Kominami K, Okura N, Kawamura M, DeMartino G, Slaughter C, Shimbara N, et al. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol Biol Cell. 1997;8:171-87 pubmed
    ..By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and ..
  14. Voloshin O, Bakhrat A, Herrmann S, Raveh D. Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. PLoS ONE. 2012;7:e39210 pubmed publisher
    ..Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCF(Ufo1) complexes. ..
  15. Geng F, Tansey W. Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci U S A. 2012;109:6060-5 pubmed publisher
    ..We find that proteasome subunits Rpt1, Rpt4, Rpn8, Rpn12, Pre6, and Pre10 are recruited to GAL10 rapidly upon galactose induction...
  16. Takeuchi J, Toh e A. Genetic evidence for interaction between components of the yeast 26S proteasome: combination of a mutation in RPN12 (a lid component gene) with mutations in RPT1 (an ATPase gene) causes synthetic lethality. Mol Gen Genet. 1999;262:145-53 pubmed
    ..b>RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth...
  17. Kominami K, DeMartino G, Moomaw C, Slaughter C, Shimbara N, Fujimuro M, et al. Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae. EMBO J. 1995;14:3105-15 pubmed
    The nin1-1 mutant of Saccharomyces cerevisiae cannot perform the G1/S and G2/M transitions at restrictive temperatures...
  18. Kawamura M, Kominami K, Takeuchi J, Toh e A. A multicopy suppressor of nin1-1 of the yeast Saccharomyces cerevisiae is a counterpart of the Drosophila melanogaster diphenol oxidase A2 gene, Dox-A2. Mol Gen Genet. 1996;251:146-52 pubmed
    b>NIN1 is an essential gene for growth of the yeast Saccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome...
  19. Saeki Y, Toh e A, Kudo T, Kawamura H, Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell. 2009;137:900-13 pubmed publisher
    ..Our results indicate that the RP assembly is a highly organized and elaborate process orchestrated by multiple proteasome-dedicated chaperones. ..
  20. Chen L, Madura K. Centrin/Cdc31 is a novel regulator of protein degradation. Mol Cell Biol. 2008;28:1829-40 pubmed
    ..These findings reveal for the first time a new role for centrin/Cdc31 in protein degradation. ..
  21. Tone Y, Tanahashi N, Tanaka K, Fujimuro M, Yokosawa H, Toh e A. Nob1p, a new essential protein, associates with the 26S proteasome of growing saccharomyces cerevisiae cells. Gene. 2000;243:37-45 pubmed
    Nob1p, which interacts with Nin1p/Rpn12, a subunit of the 19S regulatory particle (RP) of the yeast 26S proteasome, has been identified by two-hybrid screening...
  22. Voloshin O, Gocheva Y, Gutnick M, Movshovich N, Bakhrat A, Baranes Bachar K, et al. Tubulin chaperone E binds microtubules and proteasomes and protects against misfolded protein stress. Cell Mol Life Sci. 2010;67:2025-38 pubmed publisher
    ..We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes. ..
  23. Joshi K, Chen L, Torres N, Tournier V, Madura K. A proteasome assembly defect in rpn3 mutants is associated with Rpn11 instability and increased sensitivity to stress. J Mol Biol. 2011;410:383-99 pubmed publisher
    ..These studies suggest that Rpn11 is stabilized following its incorporation into proteasomes. The instability of Rpn11 and the defects of rpn3 mutants are apparently caused by a failure to recruit Rpn11 into mature proteasomes. ..
  24. Lee D, Ezhkova E, Li B, Pattenden S, Tansey W, Workman J. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell. 2005;123:423-36 pubmed
    ..These results indicate that the 19S RP modulates SAGA complex using its ATPase components, thereby facilitating subsequent transcription events at promoters. ..
  25. Funakoshi M, Li X, Velichutina I, Hochstrasser M, Kobayashi H. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J Cell Sci. 2004;117:6447-54 pubmed
    ..Our data suggest a potential mechanism for this protein-protein stabilization and also suggest that an intact proteasomal regulatory particle is required for responses to DNA damage. ..
  26. Takeuchi J, Fujimuro M, Yokosawa H, Tanaka K, Toh e A. Rpn9 is required for efficient assembly of the yeast 26S proteasome. Mol Cell Biol. 1999;19:6575-84 pubmed
    ..These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome. ..
  27. Taverner T, Hernandez H, Sharon M, Ruotolo B, Matak Vinkovic D, Devos D, et al. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc Chem Res. 2008;41:617-27 pubmed publisher
    ..Overall therefore this mass spectrometry and homology modeling approach has given significant insight into the structure of two previously intractable protein complexes and as such has broad application in structural biology. ..
  28. Ng W, Sergeyenko T, Zeng N, Brown J, Römisch K. Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. J Cell Sci. 2007;120:682-91 pubmed
    ..Mutations in the ATP-binding sites of individual Rpt proteins all reduced the affinity of 19S complexes for the ER, suggesting that the 19S base in the ATP-bound conformation docks at the Sec61 channel. ..
  29. Sharon M, Taverner T, Ambroggio X, Deshaies R, Robinson C. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006;4:e267 pubmed
    ..More generally, the results highlight the potential of mass spectrometry to add crucial insight into the structural organization of an endogenous, wild-type complex. ..
  30. Ha S, Ju D, Xie Y. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation. J Biol Chem. 2014;289:2701-10 pubmed publisher
    ..This study unveils a previously unknown role for Srp1 and Sts1 in cotranslational protein degradation and suggests a novel model whereby Srp1 and Sts1 cooperate to couple proteasomes to ribosome-bound nascent polypeptides...
  31. Yokota K, Kagawa S, Shimizu Y, Akioka H, Tsurumi C, Noda C, et al. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p. Mol Biol Cell. 1996;7:853-70 pubmed
    ..The SEN3 also was identified in a synthetic lethal screen with the nin1-1 mutant, a temperature-sensitive mutant of NIN1...
  32. Le Tallec B, Barrault M, Guerois R, Carré T, Peyroche A. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell. 2009;33:389-99 pubmed publisher
    ..Finally, we identify the putative species-specific 19S subunit S5b as a functional homolog of the Hsm3 chaperone in mammals. These findings shed light on chaperone-assisted proteasome assembly in eukaryotes. ..
  33. Saeki Y, Isono E, Toh e A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 2005;399:215-27 pubmed
    ..In this communication, we describe that Sic1 was successfully ubiquitinated by the PY motif-insertion method and demonstrate that Sic1 thus ubiquitinated was degraded by the purified yeast 26S proteasome. ..
  34. Dambacher C, Worden E, Herzik M, Martin A, Lander G. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. elife. 2016;5:e13027 pubmed publisher