RPC40

Summary

Gene Symbol: RPC40
Description: DNA-directed RNA polymerase core subunit RPC40
Alias: RPC5, DNA-directed RNA polymerase core subunit RPC40
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Harris B, Bose T, Lee K, Wang F, Lu S, Ross R, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell. 2014;25:337-46 pubmed publisher
    ..Our results strongly suggest that organization of the rDNA provided by cohesion is critical for formation and function of the nucleolus. ..
  2. Torreira E, Louro J, Pazos I, González Polo N, Gil Cartón D, Duran A, et al. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. elife. 2017;6: pubmed publisher
  3. Keener J, Josaitis C, Dodd J, Nomura M. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem. 1998;273:33795-802 pubmed
    ..The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription. ..
  4. Briand J, Navarro F, Rematier P, Boschiero C, Labarre S, Werner M, et al. Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III. Mol Cell Biol. 2001;21:6056-65 pubmed
    ..A ygr089-Delta null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant. ..
  5. Van Mullem V, Landrieux E, Vandenhaute J, Thuriaux P. Rpa12p, a conserved RNA polymerase I subunit with two functional domains. Mol Microbiol. 2002;43:1105-13 pubmed
    ..Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo. ..
  6. Huet J, Riva M, Sentenac A, Fromageot P. Yeast RNA polymerase C and its subunits. Specific antibodies as structural and functional probes. J Biol Chem. 1985;260:15304-10 pubmed
    ..These results are discussed in terms of the participation of these polypeptides to the active enzyme molecule, and of their possible role in DNA binding or transcription factor recognition. ..
  7. Kuhn C, Geiger S, Baumli S, Gartmann M, Gerber J, Jennebach S, et al. Functional architecture of RNA polymerase I. Cell. 2007;131:1260-72 pubmed
    ..In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming. ..
  8. Vannini A, Ringel R, Kusser A, Berninghausen O, Kassavetis G, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell. 2010;143:59-70 pubmed publisher
    ..These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation. ..
  9. Alonso B, Beraud C, Meguellati S, Chen S, Pellequer J, Armengaud J, et al. Eukaryotic GPN-loop GTPases paralogs use a dimeric assembly reminiscent of archeal GPN. Cell Cycle. 2013;12:463-72 pubmed publisher
    ..These results suggest that all three GPN proteins act at the molecular level in sister chromatid cohesion mechanism as a GPN|GPN complex reminiscent of the homodimeric structure of PAB0955, an archaeal member of GPN-loop GTPase. ..

More Information

Publications19

  1. Mirón García M, Garrido Godino A, García Molinero V, Hernández Torres F, Rodriguez Navarro S, Navarro F. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet. 2013;9:e1003297 pubmed publisher
    ..Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis. ..
  2. Vernekar D, Bhargava P. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. Biochim Biophys Acta. 2015;1849:1340-53 pubmed publisher
    ..Our results show that Bud27 is required in multiple activities responsible for pol III biogenesis and activity. ..
  3. Ferri M, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, et al. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol. 2000;20:488-95 pubmed
    ..The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex. ..
  4. Cieśla M, Makała E, Płonka M, Bazan R, Gewartowski K, Dziembowski A, et al. Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol. 2015;35:1169-81 pubmed publisher
    ..Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus. ..
  5. Oficjalska Pham D, Harismendy O, Smagowicz W, Gonzalez de Peredo A, Boguta M, Sentenac A, et al. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell. 2006;22:623-32 pubmed
    ..The results indicate that Pol III transcription can be globally and rapidly downregulated via dephosphorylation and relocation of a general negative cofactor. ..
  6. Bridier Nahmias A, Tchalikian Cosson A, Baller J, Menouni R, Fayol H, Flores A, et al. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration. Science. 2015;348:585-8 pubmed publisher
    ..The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host. ..
  7. Todaka Y, Wang Y, Tashiro K, Nakashima N, Nishimoto T, Sekiguchi T. Association of the GTP-binding protein Gtr1p with Rpc19p, a shared subunit of RNA polymerase I and III in yeast Saccharomyces cerevisiae. Genetics. 2005;170:1515-24 pubmed
    ..Here, we propose that Gtr1p is involved in RNA polymerase I and III assembly by its association with Rpc19p and could be a mediator that links growth regulatory signals with ribosome biogenesis. ..
  8. Pluta K, Lefebvre O, Martin N, Smagowicz W, Stanford D, Ellis S, et al. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:5031-40 pubmed
    ..These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans. ..
  9. Flores A, Briand J, Gadal O, Andrau J, Rubbi L, Van Mullem V, et al. A protein-protein interaction map of yeast RNA polymerase III. Proc Natl Acad Sci U S A. 1999;96:7815-20 pubmed
    ..Together with parallel interaction studies based on dosage-dependent suppression of conditional mutants, our data suggest a model of the pol III preinitiation complex. ..
  10. Lalo D, Carles C, Sentenac A, Thuriaux P. Interactions between three common subunits of yeast RNA polymerases I and III. Proc Natl Acad Sci U S A. 1993;90:5524-8 pubmed
    The AC40 and AC19 subunits (encoded by RPC40 and RPC19) are shared by yeast RNA polymerases I and III and have a local sequence similarity to prokaryotic alpha subunits...