RPC10

Summary

Gene Symbol: RPC10
Description: DNA-directed RNA polymerase core subunit RPC10
Alias: RPB12, DNA-directed RNA polymerase core subunit RPC10
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Vannini A, Ringel R, Kusser A, Berninghausen O, Kassavetis G, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell. 2010;143:59-70 pubmed publisher
    ..These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation. ..
  2. Lefebvre O, Ruth J, Sentenac A. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. Identification of two classes of suppressors. J Biol Chem. 1994;269:23374-81 pubmed
    ..A second class of suppressors is not involved in transcription but alleviates the main physiological defects of mutant cells. It includes RPR1 and NOP1, required for the maturation of pre-tRNA and pre-rRNA, respectively. ..
  3. Luo J, Fishburn J, Hahn S, Ranish J. An integrated chemical cross-linking and mass spectrometry approach to study protein complex architecture and function. Mol Cell Proteomics. 2012;11:M111.008318 pubmed publisher
    ..As such, it is an attractive approach to study the topology of protein complexes. ..
  4. Porrúa O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol. 2013;20:884-91 pubmed publisher
    ..We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription. ..
  5. Sayre M, Tschochner H, Kornberg R. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem. 1992;267:23376-82 pubmed
    ..TFIIA failed to substitute for any purified factor or to stimulate transcription with the complete set of factors, indicating that its function in crude extracts is primarily as an anti-inhibitor. ..
  6. Lehmann E, Brueckner F, Cramer P. Molecular basis of RNA-dependent RNA polymerase II activity. Nature. 2007;450:445-9 pubmed
    ..The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes. ..
  7. Takagi Y, Calero G, Komori H, Brown J, Ehrensberger A, Hudmon A, et al. Head module control of mediator interactions. Mol Cell. 2006;23:355-64 pubmed
    ..The head module evidently controls Mediator-RNA polymerase II and Mediator-promoter interactions. ..
  8. McCann T, Guo Y, McDonald W, Tansey W. Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A. 2016;113:1309-14 pubmed publisher
    ..We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin. ..
  9. Ferri M, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, et al. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol. 2000;20:488-95 pubmed
    ..The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex. ..

More Information

Publications30

  1. Cramer P, Bushnell D, Fu J, Gnatt A, Maier Davis B, Thompson N, et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science. 2000;288:640-9 pubmed
    ..A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA. ..
  2. Schaft D, Roguev A, Kotovic K, Shevchenko A, Sarov M, Shevchenko A, et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 2003;31:2475-82 pubmed
    ..Since SET2 is also a histone methyltransferase, these results suggest a role for histone 3 lysine 36 methylation in transcriptional elongation. ..
  3. Czeko E, Seizl M, Augsberger C, Mielke T, Cramer P. Iwr1 directs RNA polymerase II nuclear import. Mol Cell. 2011;42:261-6 pubmed publisher
    ..Iwr1 function is Pol II specific, transcription independent, and apparently conserved from yeast to human. ..
  4. Kuhn C, Geiger S, Baumli S, Gartmann M, Gerber J, Jennebach S, et al. Functional architecture of RNA polymerase I. Cell. 2007;131:1260-72 pubmed
    ..In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming. ..
  5. Kruk J, Dutta A, Fu J, Gilmour D, Reese J. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011;25:581-93 pubmed publisher
    ..Our comprehensive analysis shows that Ccr4-Not directly regulates transcription, and suggests it does so by promoting the resumption of elongation of arrested RNAPII when it encounters transcriptional blocks in vivo. ..
  6. Harris B, Bose T, Lee K, Wang F, Lu S, Ross R, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell. 2014;25:337-46 pubmed publisher
    ..Our results strongly suggest that organization of the rDNA provided by cohesion is critical for formation and function of the nucleolus. ..
  7. Dumay H, Rubbi L, Sentenac A, Marck C. Interaction between yeast RNA polymerase III and transcription factor TFIIIC via ABC10alpha and tau131 subunits. J Biol Chem. 1999;274:33462-8 pubmed
    ..A thermosensitive mutation in the C terminus region of ABC10alpha (rpc10-30) was found to be selectively suppressed by overexpression of a mutant form of tau131 (tau131-DeltaTPR2) that ..
  8. Babbarwal V, Fu J, Reese J. The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation. J Biol Chem. 2014;289:33125-30 pubmed publisher
    ..The interplay between Ccr4-Not and Rpb4/7 described here suggests a mechanism for how the cell coordinates mRNA synthesis and decay. ..
  9. Tafur L, Sadian Y, Hoffmann N, Jakobi A, Wetzel R, Hagen W, et al. Molecular Structures of Transcribing RNA Polymerase I. Mol Cell. 2016;64:1135-1143 pubmed publisher
    ..2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle. ..
  10. Xu Y, Bernecky C, Lee C, Maier K, Schwalb B, Tegunov D, et al. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat Commun. 2017;8:15741 pubmed publisher
    ..We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin. ..
  11. He X, Qian W, Wang Z, Li Y, Zhang J. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet. 2010;42:272-6 pubmed publisher
    ..We offer mechanistic explanations of these findings and experimentally validate them for 61 S. cerevisiae gene pairs. ..
  12. Daulny A, Geng F, Muratani M, Geisinger J, Salghetti S, Tansey W. Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc Natl Acad Sci U S A. 2008;105:19649-54 pubmed publisher
    ..Our data demonstrate that ubiquitylation can directly alter the subunit composition of a core component of the transcriptional machinery and provide a paradigm for how ubiquitin can influence gene activity. ..
  13. Kettenberger H, Armache K, Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell. 2004;16:955-65 pubmed
    ..Binding of the elongation factor TFIIS realigns RNA in the active center, possibly converting the elongation complex to an alternative state less prone to stalling. ..
  14. Christie K, Awrey D, Edwards A, Kane C. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37. J Biol Chem. 1994;269:936-43 pubmed
  15. Huet J, Riva M, Sentenac A, Fromageot P. Yeast RNA polymerase C and its subunits. Specific antibodies as structural and functional probes. J Biol Chem. 1985;260:15304-10 pubmed
    ..These results are discussed in terms of the participation of these polypeptides to the active enzyme molecule, and of their possible role in DNA binding or transcription factor recognition. ..
  16. Carles C, Treich I, Bouet F, Riva M, Sentenac A. Two additional common subunits, ABC10 alpha and ABC10 beta, are shared by yeast RNA polymerases. J Biol Chem. 1991;266:24092-6 pubmed
    ..Thus, the three forms of RNA polymerase share two additional and distinct polypeptides, ABC10 alpha and ABC10 beta, that therefore can be considered bona fide subunits of these enzymes. Interestingly, these two subunits bind zinc. ..
  17. Mosley A, Pattenden S, Carey M, Venkatesh S, Gilmore J, Florens L, et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell. 2009;34:168-78 pubmed publisher
    ..Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition. ..
  18. Tan Q, Prysak M, Woychik N. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol Cell Biol. 2003;23:3329-38 pubmed
    ..The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit. ..
  19. Rubbi L, Labarre Mariotte S, Chedin S, Thuriaux P. Functional characterization of ABC10alpha, an essential polypeptide shared by all three forms of eukaryotic DNA-dependent RNA polymerases. J Biol Chem. 1999;274:31485-92 pubmed
    ..This interaction is presumably a major rate-limiting step in assembly, since diploid cells containing only one functional gene copy for ABC10alpha have a partial growth defect. ..
  20. Flores A, Briand J, Gadal O, Andrau J, Rubbi L, Van Mullem V, et al. A protein-protein interaction map of yeast RNA polymerase III. Proc Natl Acad Sci U S A. 1999;96:7815-20 pubmed
    ..Together with parallel interaction studies based on dosage-dependent suppression of conditional mutants, our data suggest a model of the pol III preinitiation complex. ..
  21. Keener J, Josaitis C, Dodd J, Nomura M. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem. 1998;273:33795-802 pubmed
    ..The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription. ..