RPB8

Summary

Gene Symbol: RPB8
Description: DNA-directed RNA polymerase core subunit RPB8
Alias: DNA-directed RNA polymerase core subunit RPB8
Species: Saccharomyces cerevisiae S288c
Products:     RPB8

Top Publications

  1. Alonso B, Beraud C, Meguellati S, Chen S, Pellequer J, Armengaud J, et al. Eukaryotic GPN-loop GTPases paralogs use a dimeric assembly reminiscent of archeal GPN. Cell Cycle. 2013;12:463-72 pubmed publisher
    ..These results suggest that all three GPN proteins act at the molecular level in sister chromatid cohesion mechanism as a GPN|GPN complex reminiscent of the homodimeric structure of PAB0955, an archaeal member of GPN-loop GTPase. ..
  2. Sperling A, Jeong K, Kitada T, Grunstein M. Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Natl Acad Sci U S A. 2011;108:12693-8 pubmed publisher
  3. Kuhn C, Geiger S, Baumli S, Gartmann M, Gerber J, Jennebach S, et al. Functional architecture of RNA polymerase I. Cell. 2007;131:1260-72 pubmed
    ..In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming. ..
  4. Niesser J, Wagner F, Kostrewa D, Mühlbacher W, Cramer P. Structure of GPN-Loop GTPase Npa3 and Implications for RNA Polymerase II Assembly. Mol Cell Biol. 2015;36:820-31 pubmed publisher
    ..These results suggest that GPN-loop GTPases are assembly chaperones for Pol II and other protein complexes. ..
  5. Donaldson I, Friesen J. Zinc stoichiometry of yeast RNA polymerase II and characterization of mutations in the zinc-binding domain of the largest subunit. J Biol Chem. 2000;275:13780-8 pubmed
    ..Core activity of the mutant enzyme was reduced 20-fold. We conclude that mutations in the zinc-binding domain can reduce core activity without altering the association of any of the subunits required for this activity. ..
  6. Suh M, Meyer P, Gu M, Ye P, Zhang M, Kaplan C, et al. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem. 2010;285:34027-38 pubmed publisher
    ..Our results indicate that the dual interface based on combining PCI1 and PCI2 is required for directing CE to Pol II elongation complexes. ..
  7. Sung P, Guzder S, Prakash L, Prakash S. Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem. 1996;271:10821-6 pubmed
    ..These studies reveal the differential requirement of Rad3 DNA helicase and CTD kinase activities in damage-specific incision versus RNA polymerase II transcription. ..
  8. Harris B, Bose T, Lee K, Wang F, Lu S, Ross R, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell. 2014;25:337-46 pubmed publisher
    ..Our results strongly suggest that organization of the rDNA provided by cohesion is critical for formation and function of the nucleolus. ..
  9. Schaft D, Roguev A, Kotovic K, Shevchenko A, Sarov M, Shevchenko A, et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 2003;31:2475-82 pubmed
    ..Since SET2 is also a histone methyltransferase, these results suggest a role for histone 3 lysine 36 methylation in transcriptional elongation. ..

More Information

Publications38

  1. Duan R, Rhie B, Ryu H, Ahn S. The RNA polymerase II Rpb4/7 subcomplex regulates cellular lifespan through an mRNA decay process. Biochem Biophys Res Commun. 2013;: pubmed publisher
  2. Kruk J, Dutta A, Fu J, Gilmour D, Reese J. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011;25:581-93 pubmed publisher
    ..Our comprehensive analysis shows that Ccr4-Not directly regulates transcription, and suggests it does so by promoting the resumption of elongation of arrested RNAPII when it encounters transcriptional blocks in vivo. ..
  3. Keener J, Josaitis C, Dodd J, Nomura M. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem. 1998;273:33795-802 pubmed
    ..The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription. ..
  4. Christie K, Awrey D, Edwards A, Kane C. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37. J Biol Chem. 1994;269:936-43 pubmed
  5. Leblanc B, Benham C, Clark D. An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. Proc Natl Acad Sci U S A. 2000;97:10745-50 pubmed
    ..The role of transcription factors might be to mark the promoter and to regulate specific melting of promoter DNA. ..
  6. Duan R, Rhie B, Ryu H, Ahn S. The RNA polymerase II Rpb4/7 subcomplex regulates cellular lifespan through an mRNA decay process. Biochem Biophys Res Commun. 2013;441:266-70 pubmed
  7. Takagi Y, Calero G, Komori H, Brown J, Ehrensberger A, Hudmon A, et al. Head module control of mediator interactions. Mol Cell. 2006;23:355-64 pubmed
    ..The head module evidently controls Mediator-RNA polymerase II and Mediator-promoter interactions. ..
  8. Huet J, Riva M, Sentenac A, Fromageot P. Yeast RNA polymerase C and its subunits. Specific antibodies as structural and functional probes. J Biol Chem. 1985;260:15304-10 pubmed
    ..These results are discussed in terms of the participation of these polypeptides to the active enzyme molecule, and of their possible role in DNA binding or transcription factor recognition. ..
  9. Vannini A, Ringel R, Kusser A, Berninghausen O, Kassavetis G, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell. 2010;143:59-70 pubmed publisher
    ..These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation. ..
  10. Kettenberger H, Armache K, Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell. 2004;16:955-65 pubmed
    ..Binding of the elongation factor TFIIS realigns RNA in the active center, possibly converting the elongation complex to an alternative state less prone to stalling. ..
  11. Sayre M, Tschochner H, Kornberg R. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem. 1992;267:23376-82 pubmed
    ..TFIIA failed to substitute for any purified factor or to stimulate transcription with the complete set of factors, indicating that its function in crude extracts is primarily as an anti-inhibitor. ..
  12. Kolodziej P, Woychik N, Liao S, Young R. RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol. 1990;10:1915-20 pubmed
    ..These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme. ..
  13. Ferri M, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, et al. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol. 2000;20:488-95 pubmed
    ..The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex. ..
  14. Daulny A, Geng F, Muratani M, Geisinger J, Salghetti S, Tansey W. Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc Natl Acad Sci U S A. 2008;105:19649-54 pubmed publisher
    ..Our data demonstrate that ubiquitylation can directly alter the subunit composition of a core component of the transcriptional machinery and provide a paradigm for how ubiquitin can influence gene activity. ..
  15. Woychik N, Liao S, Kolodziej P, Young R. Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev. 1990;4:313-23 pubmed
    ..The Saccharomyces cerevisiae genes that encode these subunits (RPB5, RPB6, and RPB8) were isolated and sequenced, and their transcriptional start sites were deduced...
  16. Babbarwal V, Fu J, Reese J. The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation. J Biol Chem. 2014;289:33125-30 pubmed publisher
    ..The interplay between Ccr4-Not and Rpb4/7 described here suggests a mechanism for how the cell coordinates mRNA synthesis and decay. ..
  17. Xu Y, Bernecky C, Lee C, Maier K, Schwalb B, Tegunov D, et al. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat Commun. 2017;8:15741 pubmed publisher
    ..We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin. ..
  18. Cramer P, Bushnell D, Fu J, Gnatt A, Maier Davis B, Thompson N, et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science. 2000;288:640-9 pubmed
    ..A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA. ..
  19. Lehmann E, Brueckner F, Cramer P. Molecular basis of RNA-dependent RNA polymerase II activity. Nature. 2007;450:445-9 pubmed
    ..The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes. ..
  20. Myer V, Young R. RNA polymerase II holoenzymes and subcomplexes. J Biol Chem. 1998;273:27757-60 pubmed
  21. Mosley A, Pattenden S, Carey M, Venkatesh S, Gilmore J, Florens L, et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell. 2009;34:168-78 pubmed publisher
    ..Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition. ..
  22. Luo J, Fishburn J, Hahn S, Ranish J. An integrated chemical cross-linking and mass spectrometry approach to study protein complex architecture and function. Mol Cell Proteomics. 2012;11:M111.008318 pubmed publisher
    ..As such, it is an attractive approach to study the topology of protein complexes. ..
  23. Suh M, Ye P, Zhang M, Hausmann S, Shuman S, Gnatt A, et al. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Proc Natl Acad Sci U S A. 2005;102:17314-9 pubmed
    ..We speculate that Fcp1 interaction with the non-CTD site may mediate its stimulatory effect on transcription elongation reported previously. ..
  24. Tan Q, Prysak M, Woychik N. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol Cell Biol. 2003;23:3329-38 pubmed
    ..The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit. ..
  25. Czeko E, Seizl M, Augsberger C, Mielke T, Cramer P. Iwr1 directs RNA polymerase II nuclear import. Mol Cell. 2011;42:261-6 pubmed publisher
    ..Iwr1 function is Pol II specific, transcription independent, and apparently conserved from yeast to human. ..
  26. Porrúa O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol. 2013;20:884-91 pubmed publisher
    ..We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription. ..
  27. Briand J, Navarro F, Rematier P, Boschiero C, Labarre S, Werner M, et al. Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III. Mol Cell Biol. 2001;21:6056-65 pubmed
    ..A ygr089-Delta null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant.
  28. McCann T, Guo Y, McDonald W, Tansey W. Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A. 2016;113:1309-14 pubmed publisher
    ..We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin. ..
  29. Voutsina A, Riva M, Carles C, Alexandraki D. Sequence divergence of the RNA polymerase shared subunit ABC14.5 (Rpb8) selectively affects RNA polymerase III assembly in Saccharomyces cerevisiae. Nucleic Acids Res. 1999;27:1047-55 pubmed
    ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown...