RPA49

Summary

Gene Symbol: RPA49
Description: DNA-directed RNA polymerase I subunit RPA49
Alias: DNA-directed RNA polymerase I subunit RPA49
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Albert B, Léger Silvestre I, Normand C, Ostermaier M, Pérez Fernández J, Panov K, et al. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol. 2011;192:277-93 pubmed publisher
    RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using ..
  2. Beckouët F, Labarre Mariotte S, Albert B, Imazawa Y, Werner M, Gadal O, et al. Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol Cell Biol. 2008;28:1596-605 pubmed
    Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans...
  3. Kuhn C, Geiger S, Baumli S, Gartmann M, Gerber J, Jennebach S, et al. Functional architecture of RNA polymerase I. Cell. 2007;131:1260-72 pubmed
    ..In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming. ..
  4. Gadal O, Mariotte Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, et al. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol Cell Biol. 1997;17:1787-95 pubmed
    ..A34.5 (but not A14) becomes quasi-essential in strains lacking DNA topoisomerase I, suggesting a specific role of this subunit in helping Pol I to overcome the topological constraints imposed on ribosomal DNA by transcription. ..
  5. Liljelund P, Mariotte S, Buhler J, Sentenac A. Characterization and mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992;89:9302-5 pubmed
    ..Complete deletion of the single-copy RPA49 gene leads to viable but slowly growing colonies...
  6. Keener J, Josaitis C, Dodd J, Nomura M. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem. 1998;273:33795-802 pubmed
    ..The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription. ..
  7. Gadal O, Labarre S, Boschiero C, Thuriaux P. Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J. 2002;21:5498-507 pubmed
    ..Null mutants have a limited effect on growth. Hmo1 overexpression suppresses rpa49-Delta mutants lacking Rpa49, a non-essential but conserved subunit of RNA polymerase I corresponding to the animal ..
  8. Moretto F, Sagot I, Daignan Fornier B, Pinson B. A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast. Mol Syst Biol. 2013;9:707 pubmed publisher
    ..This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships...
  9. Anderson S, Sikes M, Zhang Y, French S, Salgia S, Beyer A, et al. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J Biol Chem. 2011;286:18816-24 pubmed publisher
    ..Genetic interactions between spt5 and rpa49? mutations together with measurements of ribosomal RNA synthesis rates, rDNA copy number, and Pol I occupancy of ..

More Information

Publications25

  1. Viktorovskaya O, Appling F, Schneider D. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J Biol Chem. 2011;286:18825-33 pubmed publisher
    ..Interestingly, spt5 truncation mutations suppress the cold-sensitive phenotype of rpa49? strain, which lacks the A49 subunit in the Pol I complex...
  2. Han Y, Yan C, Nguyen T, Jackobel A, Ivanov I, Knutson B, et al. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. elife. 2017;6: pubmed publisher
  3. Mirón García M, Garrido Godino A, García Molinero V, Hernández Torres F, Rodriguez Navarro S, Navarro F. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet. 2013;9:e1003297 pubmed publisher
    ..Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis. ..
  4. Zhang Y, Smith A, Renfrow M, Schneider D. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J Biol Chem. 2010;285:14152-9 pubmed publisher
    ..These studies demonstrate that Paf1C plays an important direct role in cellular control of rRNA expression. ..
  5. Van Mullem V, Landrieux E, Vandenhaute J, Thuriaux P. Rpa12p, a conserved RNA polymerase I subunit with two functional domains. Mol Microbiol. 2002;43:1105-13 pubmed
    ..Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo. ..
  6. Milkereit P, Tschochner H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J. 1998;17:3692-703 pubmed
    ..We propose that the formation and disruption of the pol I-Rrn3p complex reflects a molecular switch for regulating rRNA synthesis and its growth rate-dependent regulation. ..
  7. Fernández Tornero C, Moreno Morcillo M, Rashid U, Taylor N, Ruiz F, Gruene T, et al. Crystal structure of the 14-subunit RNA polymerase I. Nature. 2013;502:644-9 pubmed publisher
    ..2 in RNA cleavage and Pol I insensitivity to ?-amanitin. The A49-A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2. ..
  8. Fath S, Milkereit P, Podtelejnikov A, Bischler N, Schultz P, Bier M, et al. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol. 2000;149:575-90 pubmed
    ..Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing. ..
  9. Gomar Alba M, del Olmo M. Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes. Biochem J. 2016;473:3065-79 pubmed publisher
    ..Instead, other data presented herein indicate a key function of the Hot1 transcription factor in the recruitment of these proteins to the promoter or the 5'-coding region of the genes under its control. ..
  10. Catala M, Tremblay M, Samson E, Conconi A, Abou Elela S. Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol. 2008;28:619-29 pubmed
    ..The results demonstrate that defects in pre-rRNA processing can influence the chromatin structure of the rRNA gene arrays and reveal links among the rRNA gene chromatin, transcription, and processing. ..
  11. Briand J, Navarro F, Rematier P, Boschiero C, Labarre S, Werner M, et al. Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III. Mol Cell Biol. 2001;21:6056-65 pubmed
    ..A ygr089-Delta null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant. ..
  12. Albert B, Colleran C, L ger Silvestre I, Berger A, Dez C, Normand C, et al. Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Res. 2013;41:10135-49 pubmed publisher
    ..Schizosaccharomyces pombe) localize to the nucleolus and suppress growth defect of the RNA polymerase I mutant rpa49-?. Owing to the multiple functions of both proteins, Hmo1 and UBF1 are not fully interchangeable...
  13. Harris B, Bose T, Lee K, Wang F, Lu S, Ross R, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell. 2014;25:337-46 pubmed publisher
    ..Our results strongly suggest that organization of the rDNA provided by cohesion is critical for formation and function of the nucleolus. ..
  14. Schneider D, Nomura M. RNA polymerase I remains intact without subunit exchange through multiple rounds of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2004;101:15112-7 pubmed
    ..Thus, Pol I is not a dynamic protein complex but rather a stable enzyme. ..
  15. Penrod Y, Rothblum K, Rothblum L. Characterization of the interactions of mammalian RNA polymerase I associated proteins PAF53 and PAF49. Biochemistry. 2012;51:6519-26 pubmed publisher
    ..However, substitution of amino acids 52-98 of yeast A34.5 with amino acids 41-86 of mammalian PAF49 resulted in a protein that could heterodimerize with mouse PAF53. ..
  16. Cheng Y, Chen R. Assembly and quality control of the protein phosphatase 1 holoenzyme involves the Cdc48-Shp1 chaperone. J Cell Sci. 2015;128:1180-92 pubmed publisher
    ..Our data suggest that Cdc48-Shp1 functions as a molecular chaperone for the structural integrity of PP1 complex in general and that it specifically promotes the assembly of Glc7-Sds22-Ypi1 for nuclear import. ..