PSF2

Summary

Gene Symbol: PSF2
Description: DNA replication protein PSF2
Alias: CDC102, DNA replication protein PSF2
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17:1153-65 pubmed
    ..San; five, one, two, and three in Japanese), in budding yeast, consisting of Sld5, Psf1 (partner of Sld five 1), Psf2, and Psf3 proteins, all of which are highly conserved in eukaryotic cells...
  2. Kanemaki M, Sanchez Diaz A, Gambus A, Labib K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature. 2003;423:720-4 pubmed
    ..The degron collection could also be used to identify other, essential, proteins with roles in many other processes of eukaryotic cell biology. ..
  3. Morohashi H, Maculins T, Labib K. The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr Biol. 2009;19:1943-9 pubmed publisher
    ..Our findings suggest that the amino-terminal domains of other F box proteins might also play an analogous regulatory role, controlling the localization of the cognate SCF complexes. ..
  4. Sun J, Shi Y, Georgescu R, Yuan Z, Chait B, Li H, et al. The architecture of a eukaryotic replisome. Nat Struct Mol Biol. 2015;22:976-82 pubmed publisher
    ..Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies. ..
  5. Sengupta S, van Deursen F, De Piccoli G, Labib K. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol. 2013;23:543-52 pubmed publisher
    ..Second, it plays an equally important role after initiation, because it links the leading strand DNA polymerase to the Cdc45-MCM-GINS helicase within the replisome. ..
  6. Bruck I, Kaplan D. GINS and Sld3 compete with one another for Mcm2-7 and Cdc45 binding. J Biol Chem. 2011;286:14157-67 pubmed publisher
    ..Our results are consistent with a model wherein GINS trades places with Sld3 at a replication origin, contributing to the activation of the replication fork helicase. ..
  7. De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell. 2012;45:696-704 pubmed publisher
  8. Villa F, Simon A, Ortiz Bazan M, Kilkenny M, Wirthensohn D, Wightman M, et al. Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase. Mol Cell. 2016;63:385-96 pubmed publisher
    ..Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation. ..
  9. Maculins T, Nkosi P, Nishikawa H, Labib K. Tethering of SCF(Dia2) to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase. Curr Biol. 2015;25:2254-9 pubmed publisher
    ..Residual ubiquitylation of Mcm7 in dia2-ΔTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned. ..

More Information

Publications30

  1. Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, et al. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol. 2014;92:659-80 pubmed publisher
    ..One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication...
  2. Zhang D, Mosley A, Ramisetty S, Rodríguez Molina J, Washburn M, Ansari A. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem. 2012;287:8541-51 pubmed publisher
    ..An inability to remove these marks prevents Pol II from terminating efficiently and will likely impede subsequent assembly into the pre-initiation complex. ..
  3. Sundin B, Chiu C, Riffle M, Davis T, Muller E. Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast. 2004;21:793-800 pubmed
    ..A complete list of localizations, along with images, can be found at our website (http://www.yeastrc.org/cln2/). ..
  4. Yaakov G, Duch A, Garcia Rubio M, Clotet J, Jimenez J, Aguilera A, et al. The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol Biol Cell. 2009;20:3572-82 pubmed publisher
    ..The two mechanisms of Hog1 action lead to delayed firing of origins and prolonged replication, respectively. The Hog1-dependent delay of replication could be important to allow Hog1 to induce gene expression before replication. ..
  5. Lydeard J, Lipkin Moore Z, Sheu Y, Stillman B, Burgers P, Haber J. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 2010;24:1133-44 pubmed publisher
    ..These results suggest that origin-independent BIR involves cross-talk between normal DNA replication factors and PRR. ..
  6. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005;19:1905-19 pubmed
    ..We also show that paused forks at analogous barriers in the rDNA are regulated similarly. These data indicate that paused and stalled eukaryotic replisomes resemble each other but are regulated differently. ..
  7. van Deursen F, Sengupta S, De Piccoli G, Sanchez Diaz A, Labib K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J. 2012;31:2195-206 pubmed publisher
    ..These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins. ..
  8. Froelich C, Kang S, Epling L, Bell S, Enemark E. A conserved MCM single-stranded DNA binding element is essential for replication initiation. elife. 2014;3:e01993 pubmed publisher
    ..Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001...
  9. Tanaka S, Komeda Y, Umemori T, Kubota Y, Takisawa H, Araki H. Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol. 2013;33:2614-22 pubmed publisher
    ..We propose that the inter-BRCT region of Dpb11 is a functionally conserved GINS interaction domain that is important for the initiation of DNA replication in eukaryotes. ..
  10. Bruck I, Kanter D, Kaplan D. Enabling association of the GINS protein tetramer with the mini chromosome maintenance (Mcm)2-7 protein complex by phosphorylated Sld2 protein and single-stranded origin DNA. J Biol Chem. 2011;286:36414-26 pubmed publisher
    ..Furthermore, origin ssDNA may stimulate the formation of the CMG complex by alleviating inhibitory interactions between Sld2 with Mcm2-7. ..
  11. Langston L, Zhang D, Yurieva O, Georgescu R, Finkelstein J, Yao N, et al. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A. 2014;111:15390-5 pubmed publisher
    ..Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes. ..
  12. Bruck I, Kaplan D. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem. 2014;289:1948-59 pubmed publisher
    ..We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase...
  13. Watase G, Takisawa H, Kanemaki M. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol. 2012;22:343-9 pubmed publisher
    ..Thus, Mcm10 plays an essential role in functioning of the CMG replicative helicase independent of assembly of a stable CMG complex at origins. ..
  14. Kubota T, Hiraga S, Yamada K, Lamond A, Donaldson A. Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint. Mol Cell Proteomics. 2011;10:M110.005561 pubmed publisher
    ..Identification of Ctf18 as a checkpoint protein highlights the usefulness of chromatin proteomic analysis for understanding the in vivo function of proteins that mediate chromatin transactions. ..
  15. Muramatsu S, Hirai K, Tak Y, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. Genes Dev. 2010;24:602-12 pubmed publisher
    ..We propose that CDK regulates the initiation of DNA replication in budding yeast through formation of the pre-LC. ..
  16. Vo L, Minet M, Schmitter J, Lacroute F, Wyers F. Mpe1, a zinc knuckle protein, is an essential component of yeast cleavage and polyadenylation factor required for the cleavage and polyadenylation of mRNA. Mol Cell Biol. 2001;21:8346-56 pubmed
    ..These results show that Mpe1p plays a crucial role in 3' end formation probably by promoting the specific link between the CFI/CPF complex and pre-mRNA. ..
  17. Maric M, Maculins T, De Piccoli G, Labib K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science. 2014;346:1253596 pubmed publisher
    ..These findings indicate that the end of chromosome replication in eukaryotes is controlled in a similarly complex fashion to the much-better-characterized initiation step. ..
  18. Dhingra N, Bruck I, Smith S, Ning B, Kaplan D. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. J Biol Chem. 2015;290:7586-601 pubmed publisher
    ..Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase. ..
  19. Mnaimneh S, Davierwala A, Haynes J, Moffat J, Peng W, Zhang W, et al. Exploration of essential gene functions via titratable promoter alleles. Cell. 2004;118:31-44 pubmed
    ..We furthermore show that these strains are compatible with automated genetic analysis. This study underscores the importance of analyzing mutant phenotypes and provides a resource to complement the yeast knockout collection. ..
  20. Samora C, Saksouk J, Goswami P, Wade B, Singleton M, Bates P, et al. Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome. Mol Cell. 2016;63:371-84 pubmed publisher
    ..Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment. ..
  21. Miyazawa Onami M, Araki H, Tanaka S. Pre-initiation complex assembly functions as a molecular switch that splits the Mcm2-7 double hexamer. EMBO Rep. 2017;18:1752-1761 pubmed publisher
    ..In the pre-IC, the Mcm2-7 double hexamer is separated into single hexamers, as in the active helicase. Our data indicate that pre-IC assembly functions as an all-or-nothing molecular switch that splits the Mcm2-7 double hexamer. ..