MED7

Summary

Gene Symbol: MED7
Description: mediator complex subunit MED7
Alias: mediator complex subunit MED7
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Li L, Quinton T, Miles S, Breeden L. Genetic interactions between mediator and the late G1-specific transcription factor Swi6 in Saccharomyces cerevisiae. Genetics. 2005;171:477-88 pubmed
    ..A truncated form of the essential Srb7 mediator subunit also suppresses swi6 mutations and shows a defect in recruitment of the tail module components Sin4, Pgd1, and Gal11 to the mediator complex. ..
  2. Cai G, Imasaki T, Takagi Y, Asturias F. Mediator structural conservation and implications for the regulation mechanism. Structure. 2009;17:559-67 pubmed publisher
    ..This suggests that the topology and structural dynamics of Mediator constitute important elements of a conserved regulation mechanism. ..
  3. Lorch Y, Beve J, Gustafsson C, Myers L, Kornberg R. Mediator-nucleosome interaction. Mol Cell. 2000;6:197-201 pubmed
    ..Sequence alignment shows significant similarity of Nut1 to the GCN5-related N-acetyltransferase superfamily. Finally, recombinant Nut1 exhibits HAT activity in an in-gel assay. ..
  4. Myers L, Gustafsson C, Hayashibara K, Brown P, Kornberg R. Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A. 1999;96:67-72 pubmed
    ..These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator. ..
  5. Han S, Lee J, Kang J, Kim Y. Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes. J Biol Chem. 2001;276:37020-6 pubmed
  6. Baumli S, Hoeppner S, Cramer P. A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. J Biol Chem. 2005;280:18171-8 pubmed
    ..We present the 3.0-A crystal structure of a highly conserved part of the Mediator, the MED7.MED21 (Med7.Srb7) heterodimer...
  7. Singh H, Erkine A, Kremer S, Duttweiler H, Davis D, Iqbal J, et al. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics. 2006;172:2169-84 pubmed
    ..Strikingly, all six groups contain alleles of genes that encode subunits of Mediator. Three of the six subunits, Med7, Med10/Nut2, and Med21/Srb7, map to Mediator's middle domain; two subunits, Med14/Rgr1 and Med16/Sin4, to its tail ..
  8. Andrau J, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp M, van de Peppel J, et al. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell. 2006;22:179-92 pubmed
    ..These results shed light on Cdk8 repression, suggest additional roles for Mediator, and query models of recruitment-coupled regulation. ..
  9. Koschubs T, Lorenzen K, Baumli S, Sandström S, Heck A, Cramer P. Preparation and topology of the Mediator middle module. Nucleic Acids Res. 2010;38:3186-95 pubmed publisher
    ..Protein-protein interaction assays combined with previously published data suggest that the Med7 and Med4 subunits serve as a binding platform to form the three heterodimeric subcomplexes, Med7N/21, Med7C/31 and ..

More Information

Publications28

  1. Myers L, Gustafsson C, Bushnell D, Lui M, Erdjument Bromage H, Tempst P, et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 1998;12:45-54 pubmed
    ..Evidence for human homologs of several mediator proteins, including Med7, points to similar mechanisms in higher cells.
  2. Han S, Lee Y, Gim B, Ryu G, Park S, Lane W, et al. Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol Cell Biol. 1999;19:979-88 pubmed
  3. Lee Y, Park J, Min S, Han S, Kim Y. An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol. 1999;19:2967-76 pubmed
  4. Linder T, Zhu X, Baraznenok V, Gustafsson C. The classical srb4-138 mutant allele causes dissociation of yeast Mediator. Biochem Biophys Res Commun. 2006;349:948-53 pubmed
    ..Interestingly, both sub-complexes are able to associate with an active promoter at the permissive temperature but at the non-permissive temperature the head domain is lost from the promoter. ..
  5. Baidoobonso S, Guidi B, Myers L. Med19(Rox3) regulates Intermodule interactions in the Saccharomyces cerevisiae mediator complex. J Biol Chem. 2007;282:5551-9 pubmed
    ..Although the Middle module is unnecessary for holding the Head and Tail modules together, it is required for the complex to function as a conduit between activators and the core transcription machinery. ..
  6. Lariviere L, Seizl M, van Wageningen S, Röther S, van de Pasch L, Feldmann H, et al. Structure-system correlation identifies a gene regulatory Mediator submodule. Genes Dev. 2008;22:872-7 pubmed publisher
    ..The presented structure-based system perturbation is superior to gene deletion analysis of gene regulation. ..
  7. Takahashi H, Kasahara K, Kokubo T. Saccharomyces cerevisiae Med9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells. 2009;14:53-67 pubmed publisher
    ..aa 64-149) has a more fundamental function involved in direct binding to the amino-terminal portions of Med4 and Med7 and the assembly of Med9 into the Middle module...
  8. Seizl M, Lariviere L, Pfaffeneder T, Wenzeck L, Cramer P. Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization. Nucleic Acids Res. 2011;39:6291-304 pubmed publisher
    ..The bundle domain fold is also present in the Mediator middle module subcomplex Med7/21 and is predicted in the Mediator heterodimers Med2/3, Med4/9, Med10/14 and Med28/30...
  9. Liu Z, Myers L. Med5(Nut1) and Med17(Srb4) are direct targets of mediator histone H4 tail interactions. PLoS ONE. 2012;7:e38416 pubmed publisher
    ..This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct. ..
  10. Miller C, Matic I, Maier K, Schwalb B, Roether S, Strasser K, et al. Mediator phosphorylation prevents stress response transcription during non-stress conditions. J Biol Chem. 2012;287:44017-26 pubmed publisher
    ..Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells. ..
  11. Peiró Chova L, Estruch F. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J Biol Chem. 2009;284:28958-67 pubmed publisher
  12. Hallberg M, Hu G, Tronnersjö S, Shaikhibrahim Z, Balciunas D, Bjorklund S, et al. Functional and physical interactions within the middle domain of the yeast mediator. Mol Genet Genomics. 2006;276:197-210 pubmed
    ..The three strongest suppressors were MED7 and MED10 (NUT2), which encode other Mediator subunits, and ASH1, which encodes a repressor of the HO gene...
  13. Eyboulet F, Wydau Dematteis S, Eychenne T, Alibert O, Neil H, Boschiero C, et al. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo. Nucleic Acids Res. 2015;43:9214-31 pubmed publisher
    ..This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. ..
  14. Liu Z, Myers L. Fungal mediator tail subunits contain classical transcriptional activation domains. Mol Cell Biol. 2015;35:1363-75 pubmed publisher
    ..Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen. ..
  15. Eychenne T, Novikova E, Barrault M, Alibert O, Boschiero C, Peixeiro N, et al. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev. 2016;30:2119-2132 pubmed
    ..This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. ..
  16. Gao Q, Madian A, Liu X, Adamec J, Regnier F. Coupling protein complex analysis to peptide based proteomics. J Chromatogr A. 2010;1217:7661-8 pubmed publisher
  17. Peiró Chova L, Estruch F. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae. Genetics. 2007;176:125-38 pubmed
    ..of NC2 depletion was also observed by reducing the amounts of the mediator essential components Nut2 and Med7, as well as by deleting any of the nonessential mediator components, except Med2, Med3, and Gal11 subunits...
  18. Balciunas D, Gälman C, Ronne H, Bjorklund S. The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc Natl Acad Sci U S A. 1999;96:376-81 pubmed
    ..Finally, we show that the Med2 protein is lost from the mediator on purification from Med1-deficient cells, indicating a physical interaction between Med1 and Med2. ..
  19. Lee Y, Kim Y. Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase II transcription. Mol Cell Biol. 1998;18:5364-70 pubmed
    ..Our results suggest not only the existence of a specific interaction between Med6 and Srb4 but also the requirement of this interaction in transcriptional regulation of RNA polymerase II holoenzyme. ..