BET1

Summary

Gene Symbol: BET1
Description: Bet1p
Alias: SLY12, Bet1p
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Tsui M, Banfield D. Yeast Golgi SNARE interactions are promiscuous. J Cell Sci. 2000;113 ( Pt 1):145-52 pubmed
    ..between full length soluble recombinant forms of SNAREs (Sed5p, Sft1p, Ykt6p, Vti1p, Gos1p, Sec22p, Bos1p, and Bet1p) involved in ER-Golgi and intra-Golgi membrane trafficking...
  2. Rossi G, Kolstad K, Stone S, Palluault F, Ferro Novick S. BET3 encodes a novel hydrophilic protein that acts in conjunction with yeast SNAREs. Mol Biol Cell. 1995;6:1769-80 pubmed
    ..in bet3-1 was isolated in a synthetic lethal screen designed to identify new genes whose products may interact with BET1, a type II integral membrane protein that is required for ER to Golgi transport...
  3. Newman A, Groesch M, Ferro Novick S. Bos1p, a membrane protein required for ER to Golgi transport in yeast, co-purifies with the carrier vesicles and with Bet1p and the ER membrane. EMBO J. 1992;11:3609-17 pubmed
    ..Here we show that BET1 is structurally similar to the synaptobrevins and identical to the SLY12 gene product...
  4. VanRheenen S, Cao X, Sapperstein S, Chiang E, Lupashin V, Barlowe C, et al. Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol. 1999;147:729-42 pubmed
    ..is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p...
  5. Stone S, Sacher M, Mao Y, Carr C, Lyons P, Quinn A, et al. Bet1p activates the v-SNARE Bos1p. Mol Biol Cell. 1997;8:1175-81 pubmed
    b>Bet1p is a type II membrane protein that is required for vesicular transport between the endoplasmic reticulum and Golgi complex in the yeast Saccharomyces cerevisiae...
  6. Ossig R, Dascher C, Trepte H, Schmitt H, Gallwitz D. The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport. Mol Cell Biol. 1991;11:2980-93 pubmed
    ..Here we report that four newly discovered suppressors of YPT1 deletion (SLY1-20, SLY2, SLY12, and SLY41) to a varying degree restore ER-to-Golgi transport defects in cells lacking Ypt1p...
  7. Rexach M, Latterich M, Schekman R. Characteristics of endoplasmic reticulum-derived transport vesicles. J Cell Biol. 1994;126:1133-48 pubmed
    ..during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins...
  8. Newman A, Ferro Novick S. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection. J Cell Biol. 1987;105:1587-94 pubmed
    ..The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport...
  9. S√łgaard M, Tani K, Ye R, Geromanos S, Tempst P, Kirchhausen T, et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell. 1994;78:937-48 pubmed
    ..that docking complexes can contain many distinct species of SNAREs (Sed5p, Bos1p, Sec22p, Ykt6p, and likely Bet1p, p28, and p14) suggests that multimeric interactions are features of the fusion machinery, and may also improve ..

More Information

Publications52

  1. Tsui M, Tai W, Banfield D. Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Mol Biol Cell. 2001;12:521-38 pubmed
    ..Rather our data are consistent with the existence of multiple (perhaps parallel) trafficking pathways where Sed5p-containing SNARE complexes play overlapping and/or distinct functional roles. ..
  2. Dascher C, Ossig R, Gallwitz D, Schmitt H. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol Cell Biol. 1991;11:872-85 pubmed
    ..By exploiting a GAL10-YPT1 fusion to regulate YPT1 expression, three multicopy suppressors, SLY2, SLY12, and SLY41, and a single-copy suppressor, SLY1-20, that allowed YPT1-independent growth were isolated...
  3. Spang A, Schekman R. Reconstitution of retrograde transport from the Golgi to the ER in vitro. J Cell Biol. 1998;143:589-99 pubmed
    ..v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport...
  4. Newman A, Shim J, Ferro Novick S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol Cell Biol. 1990;10:3405-14 pubmed
    ..While screening a yeast genomic library for genes complementing the ER-accumulating mutant bet1 (A. Newman and S. Ferro-Novick, J. Cell Biol. 105: 1587-1594, 1987), we isolated BET1 and BOS1 (bet one suppressor)...
  5. VanRheenen S, Cao X, Lupashin V, Barlowe C, Waters M. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol. 1998;141:1107-19 pubmed
    ..Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20...
  6. Springer S, Schekman R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science. 1998;281:698-700 pubmed
    ..Here, two ER to Golgi v-SNAREs, Bet1p and Bos1p, were shown to interact specifically with Sar1p, Sec23p, and Sec24p, components of the COPII coat, in a ..
  7. Poon P, Cassel D, Spang A, Rotman M, Pick E, Singer R, et al. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J. 1999;18:555-64 pubmed
    ..a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the ..
  8. Parlati F, Varlamov O, Paz K, McNew J, Hurtado D, Sollner T, et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci U S A. 2002;99:5424-9 pubmed
    ..6%. ..
  9. Peng R, Gallwitz D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol. 2002;157:645-55 pubmed
    ..This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly. ..
  10. Shim J, Newman A, Ferro Novick S. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J Cell Biol. 1991;113:55-64 pubmed
    ..Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast...
  11. Sapperstein S, Lupashin V, Schmitt H, Waters M. Assembly of the ER to Golgi SNARE complex requires Uso1p. J Cell Biol. 1996;132:755-67 pubmed
    ..phenotype of the uso1-1 mutant can be suppressed by overexpression of each of the known ER to Golgi v-SNAREs (Bet1p, Bos1p, Sec22p, and Ykt6p)...
  12. Jiang Y, Scarpa A, Zhang L, Stone S, Feliciano E, Ferro Novick S. A high copy suppressor screen reveals genetic interactions between BET3 and a new gene. Evidence for a novel complex in ER-to-Golgi transport. Genetics. 1998;149:833-41 pubmed
    ..copy suppressors of the bet5-1 mutant include several genes whose products are required for ER-to-Golgi transport (BET1, SEC22, USO1 and DSS4) and the maintenance of the Golgi (ANP1)...
  13. Kim D, Sacher M, Scarpa A, Quinn A, Ferro Novick S. High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking. Mol Biol Cell. 1999;10:3317-29 pubmed
    ..Sec34p and Sec35p stably associate with each other to form a multiprotein complex of approximately 480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic. ..
  14. Parlati F, McNew J, Fukuda R, Miller R, Sollner T, Rothman J. Topological restriction of SNARE-dependent membrane fusion. Nature. 2000;407:194-8 pubmed
    ..In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from ..
  15. McNew J, Parlati F, Fukuda R, Johnston R, Paz K, Paumet F, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature. 2000;407:153-9 pubmed
    ..Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis. ..
  16. Kurihara T, Hamamoto S, Gimeno R, Kaiser C, Schekman R, Yoshihisa T. Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell. 2000;11:983-98 pubmed
    ..could replace Sec23p/Sec24p in the packaging of a soluble cargo molecule (alpha-factor) and v-SNAREs (Sec22p and Bet1p) into COPII vesicles...
  17. Schindler C, Spang A. Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF. Mol Biol Cell. 2007;18:2852-63 pubmed
  18. Peng R, Gallwitz D. Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J. 2004;23:3939-49 pubmed
    ..The newly identified, direct interactions of the SM protein with nonsytaxin SNAREs might provide a molecular mechanism by which SNAREs can be activated to engage in pairing and assemble into fusogenic SNARE complexes. ..
  19. Legesse Miller A, Sagiv Y, Glozman R, Elazar Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem. 2000;275:32966-73 pubmed
    ..Aut7p interacts physically with the following two v-SNAREs: Bet1p, which is involved in endoplasmic reticulum to Golgi vesicular transport, and Nyv1p, implicated in vacuolar ..
  20. Kosodo Y, Noda Y, Adachi H, Yoda K. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci. 2002;115:3683-91 pubmed
    ..In the wildtype, a detectable amount of Sly1 was found in the complex between Sed5 and the v-SNARE Bet1. In vitro formation of this complex on different membranes in yeast lysate was enhanced by the addition of ..
  21. Kama R, Kanneganti V, Ungermann C, Gerst J. The yeast Batten disease orthologue Btn1 controls endosome-Golgi retrograde transport via SNARE assembly. J Cell Biol. 2011;195:203-15 pubmed publisher
    ..Thus, Btn1 controls retrograde sorting by regulating SNARE phosphorylation and assembly, a process that may be adversely affected in Batten Disease patients. ..
  22. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol. 2007;179:1179-92 pubmed
    ..These data suggest that the COG complex orchestrates vesicular trafficking similarly in yeast and mammalian cells by binding to the t-SNARE Syntaxin5a/Sed5p and enhancing the stability of intra-Golgi SNARE complexes. ..
  23. Schindler C, Rodriguez F, Poon P, Singer R, Johnston G, Spang A. The GAP domain and the SNARE, coatomer and cargo interaction region of the ArfGAP2/3 Glo3 are sufficient for Glo3 function. Traffic. 2009;10:1362-75 pubmed publisher
    ..Our data suggest that membrane-interaction modules and cargo-sensing regions have evolved independently in ArfGAP1s versus ArfGAP2/3s. ..
  24. Kito M, Seog D, Igarashi K, Kambe Honjo H, Yoda K, Yamasaki M. Calcium and SLY genes suppress the temperature-sensitive secretion defect of Saccharomyces cerevisiae uso1 mutant. Biochem Biophys Res Commun. 1996;220:653-7 pubmed
    ..The common phenotype and suppression of the mutants suggest that Uso1 and Ypt1 proteins function in the same process of protein transport, i.e., targeting or fusion of the transport vesicles to the Golgi membrane. ..
  25. Mossessova E, Bickford L, Goldberg J. SNARE selectivity of the COPII coat. Cell. 2003;114:483-95 pubmed
    ..Here, we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII...
  26. Miller E, Beilharz T, Malkus P, Lee M, Hamamoto S, Orci L, et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003;114:497-509 pubmed
    ..We identified a site on Sec24p that recognizes the v-SNARE Bet1p and show that packaging of a number of cargo molecules is disrupted when mutations are introduced at this site...
  27. Kosodo Y, Noda Y, Adachi H, Yoda K. Cooperation of Sly1/SM-family protein and sec18/NSF of Saccharomyces cerevisiae in disassembly of cis-SNARE membrane-protein complexes. Biosci Biotechnol Biochem. 2003;67:448-50 pubmed
    ..These results suggest that Slyl and Sec18 proteins work cooperatively and that the binding of Slyl to Sed5 stimulates the disassembly of the cis-SNARE complex by Sec18 ATPase. ..
  28. Bacon R, Salminen A, Ruohola H, Novick P, Ferro Novick S. The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J Cell Biol. 1989;109:1015-22 pubmed
    ..We have also established genetic interactions between ypt1 and a subset of the other genes required for transport to and through the Golgi apparatus. ..
  29. Li Y, Gallwitz D, Peng R. Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum. Mol Biol Cell. 2005;16:3951-62 pubmed
    ..Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum. ..
  30. Dilcher M, Veith B, Chidambaram S, Hartmann E, Schmitt H, Fischer von Mollard G. Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO J. 2003;22:3664-74 pubmed
    ..Sec22p, which form a SNARE complex required for retrograde traffic from the Golgi to the ER, but neither Bos1p nor Bet1p (members of the SNARE complex in anterograde traffic to the Golgi)...
  31. Kosodo Y, Imai K, Hirata A, Noda Y, Takatsuki A, Adachi H, et al. Multicopy suppressors of the sly1 temperature-sensitive mutation in the ER-Golgi vesicular transport in Saccharomyces cerevisiae. Yeast. 2001;18:1003-14 pubmed
    ..proteins, SSB1 and SSB2; (3) cell surface proteins, WSC1, WSC2 and MID2; (4) ER-Golgi transport proteins, USO1 and BET1; and (5) an as-yet-uncharacterized protein, HSD1 (high-copy suppressor of SLY1 defect 1)...
  32. Miller E, Antonny B, Hamamoto S, Schekman R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 2002;21:6105-13 pubmed
    ..with Lst1p in the absence of Sec24p are deficient in a distinct subset of cargo molecules, including the SNAREs, Bet1p, Bos1p and Sec22p...
  33. Flanagan J, Barlowe C. Cysteine-disulfide cross-linking to monitor SNARE complex assembly during endoplasmic reticulum-Golgi transport. J Biol Chem. 2006;281:2281-8 pubmed
    ..In Saccharomyces cerevisiae, anterograde ER-Golgi transport requires four SNARE proteins: Sec22p, Bos1p, Bet1p, and Sed5p...
  34. Buchanan R, Kaufman A, Kung Tran L, Miller E. Genetic analysis of yeast Sec24p mutants suggests cargo binding is not co-operative during ER export. Traffic. 2010;11:1034-43 pubmed publisher
    ..Our findings suggest that co-operativity does not influence cargo capture at these sites, and that Sec22p rescue occurs via its function as a retrograde SNARE. ..
  35. Furukawa N, Mima J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci Rep. 2014;4:4277 pubmed publisher
    ..Thus, our findings uncover multiple and distinct strategies of SNAREs to directly mediate fusion specificity. ..
  36. Yahara N, Sato K, Nakano A. The Arf1p GTPase-activating protein Glo3p executes its regulatory function through a conserved repeat motif at its C-terminus. J Cell Sci. 2006;119:2604-12 pubmed
    ..We name this region the Glo3 motif and present evidence that the motif is required for the function of Glo3p in vivo. ..
  37. Duden R, Hosobuchi M, Hamamoto S, Winey M, Byers B, Schekman R. Yeast beta- and beta'-coat proteins (COP). Two coatomer subunits essential for endoplasmic reticulum-to-Golgi protein traffic. J Biol Chem. 1994;269:24486-95 pubmed
    ..Genetic interactions connect sec27-1 and sec21-1 (coatomer gamma subunit) with the ARF1 and ARF2 genes and with the SEC22, BET1, and BOS1 genes, which encode membrane proteins involved in ER-to-Golgi transport.
  38. Graf C, Riedel D, Schmitt H, Jahn R. Identification of functionally interacting SNAREs by using complementary substitutions in the conserved '0' layer. Mol Biol Cell. 2005;16:2263-74 pubmed
    ..growth defects above 30 degrees C that were rescued by Q-->R substitutions in the Qa and Qc SNAREs Sed5p and Bet1p, respectively...
  39. Kuehn M, Herrmann J, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998;391:187-90 pubmed
    ..Our results indicate that cargo packaging signals and soluble cargo adaptors are recognized by a recruitment complex comprising Sar1-GTP and Sec23/24...
  40. Sato K, Nakano A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol. 2005;12:167-74 pubmed
    ..These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles. ..
  41. Liu Y, Flanagan J, Barlowe C. Sec22p export from the endoplasmic reticulum is independent of SNARE pairing. J Biol Chem. 2004;279:27225-32 pubmed
    ..direct this SNARE protein to the endoplasmic reticulum (ER), to Golgi membranes, and into SNARE complexes with Bet1p, Bos1p, and Sed5p...
  42. Rein U, Andag U, Duden R, Schmitt H, Spang A. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol. 2002;157:395-404 pubmed
    ..The mechanisms by which v-SNAREs interact with COPI and COPII coat proteins seem to be different and may play a key role in determining specificity in vesicle budding...
  43. Otte S, Belden W, Heidtman M, Liu J, Jensen O, Barlowe C. Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J Cell Biol. 2001;152:503-18 pubmed
    ..We identified four known vesicle proteins (Erv14p, Bet1p, Emp24p, and Erv25p) and an additional nine species (Yip3p, Rer1p, Erp1p, Erp2p, Erv29p, Yif1p, Erv41p, Erv46p, ..