ATP18

Summary

Gene Symbol: ATP18
Description: F1F0 ATP synthase subunit i
Alias: F1F0 ATP synthase subunit i
Species: Saccharomyces cerevisiae S288c

Top Publications

  1. Pagadala V, Vistain L, Symersky J, Mueller D. Characterization of the mitochondrial ATP synthase from yeast Saccharomyces cerevisae. J Bioenerg Biomembr. 2011;43:333-47 pubmed publisher
    ..F(1)F(o) ATP synthase with ?-GFP was purified to homogeneity and serves as an excellent enzyme for two- and three-dimensional crystallization studies. ..
  2. Gavin P, Prescott M, Devenish R. F1F0-ATP synthase complex interactions in vivo can occur in the absence of the dimer specific subunit e. J Bioenerg Biomembr. 2005;37:55-66 pubmed
    ..Moreover, FRET was observed within cells lacking the dimer specific subunit e, indicating structured associations can occur within the inner membrane in the absence of subunit e. ..
  3. Vaillier J, Arselin G, Graves P, Camougrand N, Velours J. Isolation of supernumerary yeast ATP synthase subunits e and i. Characterization of subunit i and disruption of its structural gene ATP18. J Biol Chem. 1999;274:543-8 pubmed
    ..The ATP18 gene encodes subunit i, which is 59 amino acids long and corresponds to a calculated mass of 6687 Da. Its pI is 9...
  4. Fronzes R, Weimann T, Vaillier J, Velours J, Brèthes D. The peripheral stalk participates in the yeast ATP synthase dimerization independently of e and g subunits. Biochemistry. 2006;45:6715-23 pubmed
  5. Arnold I, Pfeiffer K, Neupert W, Stuart R, Schagger H. ATP synthase of yeast mitochondria. Isolation of subunit j and disruption of the ATP18 gene. J Biol Chem. 1999;274:36-40 pubmed
    ..An open reading frame of 127 base pairs (ATP18), which encodes for Su j, was identified on chromosome XIII...
  6. Giraud M, Paumard P, Soubannier V, Vaillier J, Arselin G, Salin B, et al. Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae?. Biochim Biophys Acta. 2002;1555:174-80 pubmed
    ..We provide a model in which the mitochondrial ATP synthase is a key element in cristae morphogenesis. ..
  7. Nair U, Cao Y, Xie Z, Klionsky D. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem. 2010;285:11476-88 pubmed publisher
  8. Paumard P, Vaillier J, Napias C, Arselin G, Brethes D, Graves P, et al. Environmental study of subunit i, a F(o) component of the yeast ATP synthase. Biochemistry. 2000;39:4199-205 pubmed
  9. Wagner K, Perschil I, Fichter C, van der Laan M. Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i. Mol Biol Cell. 2010;21:1494-504 pubmed publisher
    ..We show that two other small F(o)-components, Su k (Atp19) and Su i (Atp18) are involved in the stepwise assembly of F(1)F(o)-ATP synthase dimers and oligomers...

More Information

Publications11

  1. Förster K, Turina P, Drepper F, Haehnel W, Fischer S, Graber P, et al. Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes. Biochim Biophys Acta. 2010;1797:1828-37 pubmed publisher
    ..The dependence of the turnover on the phosphate concentration and the dependence of K(M) on pH(out) indicated that the substrate for ATP synthesis is the monoanionic phosphate species H?PO??. ..
  2. Rak M, Gokova S, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase. EMBO J. 2011;30:920-30 pubmed publisher
    ..These studies show that assembly of the ATP synthase is not a single linear process, as previously thought, but rather involves two separate but coordinately regulated pathways that converge at the end stage. ..