Tnni2

Summary

Gene Symbol: Tnni2
Description: troponin I, skeletal, fast 2
Alias: troponin I, fast skeletal muscle, troponin I, fast-twitch isoform
Species: mouse
Products:     Tnni2

Top Publications

  1. Zhao W, Dhoot G. Both smooth and skeletal muscle precursors are present in foetal mouse oesophagus and they follow different differentiation pathways. Dev Dyn. 2000;218:587-602 pubmed
  2. Delgado Olguin P, Huang Y, Li X, Christodoulou D, Seidman C, Seidman J, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44:343-7 pubmed publisher
    ..Our results suggest that epigenetic dysregulation in embryonic progenitor cells is a predisposing factor for adult disease and dysregulated stress responses. ..
  3. van Rooij E, Quiat D, Johnson B, Sutherland L, Qi X, Richardson J, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662-73 pubmed publisher
  4. Dilg D, Saleh R, Phelps S, Rose Y, Dupays L, Murphy C, et al. HIRA Is Required for Heart Development and Directly Regulates Tnni2 and Tnnt3. PLoS ONE. 2016;11:e0161096 pubmed publisher
    ..We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of ..
  5. Petchey L, Risebro C, Vieira J, Roberts T, Bryson J, Greensmith L, et al. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2014;111:9515-20 pubmed publisher
    ..Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. ..
  6. Sakakibara I, Santolini M, Ferry A, Hakim V, Maire P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 2014;10:e1004386 pubmed publisher
    ..Functional fast-sarcomeric unit formation is achieved by the coordinate expression of fast MYHs and linc-MYH, under the control of a common Six-bound enhancer. ..
  7. Ju Y, Li J, Xie C, Ritchlin C, Xing L, Hilton M, et al. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice. Genesis. 2013;51:667-75 pubmed publisher
    ..Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach ..
  8. Braun T, Arnold H. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 1995;14:1176-86 pubmed
    ..Our results provide evidence that skeletal myogenesis can proceed in the absence of two myogenic factors, Myf-5 and Myf-6, therefore they must exert largely non-redundant functions in vivo. ..
  9. Harmelink C, Peng Y, Debenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373:53-63 pubmed publisher
    ..In summary, Mycn acts downstream of BMP and NRG1 cardiogenic signaling pathways to promote normal myocardial wall morphogenesis. ..

Scientific Experts

More Information

Publications28

  1. Trivedi C, Zhu W, Wang Q, Jia C, Kee H, Li L, et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell. 2010;19:450-9 pubmed publisher
    ..These results suggest that Gata4 is a nonhistone target of Hdac2-mediated deacetylation and that Hdac2, Hopx, and Gata4 coordinately regulate cardiac myocyte proliferation during embryonic development. ..
  2. Potthoff M, Arnold M, McAnally J, Richardson J, Bassel Duby R, Olson E. Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol Cell Biol. 2007;27:8143-51 pubmed
    ..These results reveal a key role for Mef2c in maintenance of sarcomere integrity and postnatal maturation of skeletal muscle. ..
  3. Issa L, Palmer S, Guven K, Santucci N, Hodgson V, Popovic K, et al. MusTRD can regulate postnatal fiber-specific expression. Dev Biol. 2006;293:104-15 pubmed
    ..These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins. ..
  4. Tasheva E, Ke A, Deng Y, Jun C, Takemoto L, Koester A, et al. Differentially expressed genes in the lens of mimecan-null mice. Mol Vis. 2004;10:403-16 pubmed
    ..Our results provide insight into the function of mimecan in the lens and enable further characterization of molecular mechanisms by which this protein exerts its biological roles. ..
  5. Guenet J, Simon Chazottes D, Gravel M, Hastings K, Schiaffino S. Cardiac and skeletal muscle troponin I isoforms are encoded by a dispersed gene family on mouse chromosomes 1 and 7. Mamm Genome. 1996;7:13-5 pubmed
    ..The fast skeletal muscle troponin I locus (Tnni2), mapped to Chr 7, approximately 70 cM from the centromere...
  6. Gomez Velazquez M, Badia Careaga C, Lechuga Vieco A, Nieto Arellano R, Tena J, Rollán I, et al. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet. 2017;13:e1006985 pubmed publisher
    ..Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. ..
  7. MacLean D, Meedel T, Hastings K. Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution. J Biol Chem. 1997;272:32115-20 pubmed
  8. Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn. 2005;234:301-11 pubmed
    ..Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development...
  9. Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, et al. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem. 2014;289:29801-16 pubmed publisher
    ..of genes that are critical for muscular system development and function, such as muscle contraction genes TNNI2, TNNT1, and CKM; contractile fiber gene ACTA1; and cardiac arrhythmia associated ion channel coding genes ABCC9 ..
  10. Yang J, Bücker S, Jungblut B, Böttger T, Cinnamon Y, Tchorz J, et al. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res. 2012;96:276-85 pubmed publisher
    ..This study identified potential novel roles of Numb/Numblike in regulating trabeculation and compaction by inhibiting Notch2 and Bmp10 signalling. ..
  11. Barton P, Mullen A, Cullen M, Dhoot G, Simon Chazottes D, Guenet J. Genes encoding troponin I and troponin T are organized as three paralogous pairs in the mouse genome. Mamm Genome. 2000;11:926-9 pubmed
  12. Jin C, Chen J, Meng Q, Carreira V, Tam N, Geh E, et al. Deciphering gene expression program of MAP3K1 in mouse eyelid morphogenesis. Dev Biol. 2013;374:96-107 pubmed publisher
    ..Using LCM and expression array, our studies have uncovered novel molecular signatures of MAP3K1 in embryonic eyelid closure. ..
  13. Daou N, Lecolle S, Lefebvre S, Della Gaspera B, Charbonnier F, Chanoine C, et al. A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development. 2013;140:4914-25 pubmed publisher
    ..Altogether, our findings demonstrate that the calcineurin/NFAT pathway plays a new role in establishing the early muscle fiber type in immature myofibers during embryogenesis. ..
  14. Lewandowski S, Janardhan H, Smee K, Bachman M, Sun Z, Lazar M, et al. Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis. Hum Mol Genet. 2014;23:3801-9 pubmed publisher
    ..These findings reveal that Hdac3 plays a critical role in cardiac progenitor cells to regulate early cardiogenesis. ..
  15. Chen Z, Friedrich G, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 1994;8:2293-301 pubmed
    ..Although transcription of a number of muscle-specific genes believed to be TEF-1 targets appears normal, the defect in cardiogenesis is likely attributable to diminished transcription of one or several cardiac-specific genes. ..
  16. Zhu L, Lyons G, Juhasz O, Joya J, Hardeman E, Wade R. Developmental regulation of troponin I isoform genes in striated muscles of transgenic mice. Dev Biol. 1995;169:487-503 pubmed
    ..In addition, we provide the first evidence that the fast-twitch skeletal muscle isoform of troponin I, TnIf, is transiently expressed during early cardiac muscle development. ..
  17. Zhu X, Wang F, Zhao Y, Yang P, Chen J, Sun H, et al. A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice. PLoS Genet. 2014;10:e1004589 pubmed publisher
    ..this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein...
  18. Koppe R, Hallauer P, Karpati G, Hastings K. cDNA clone and expression analysis of rodent fast and slow skeletal muscle troponin I mRNAs. J Biol Chem. 1989;264:14327-33 pubmed
  19. Dupays L, Shang C, Wilson R, Kotecha S, Wood S, Towers N, et al. Sequential Binding of MEIS1 and NKX2-5 on the Popdc2 Gene: A Mechanism for Spatiotemporal Regulation of Enhancers during Cardiogenesis. Cell Rep. 2015;13:183-195 pubmed publisher
    ..Binding of the two factors to such overlapping sites is mutually exclusive, and this provides a simple regulatory mechanism for spatial and temporal synchronization of a common pool of targets between NKX2-5 and MEIS1. ..