Myh8

Summary

Gene Symbol: Myh8
Description: myosin, heavy polypeptide 8, skeletal muscle, perinatal
Alias: 4832426G23Rik, AI327267, MHCp, MyHC-pn, Myhs-p, Myhsp, myosin-8, Beta-MHC antisense, myHC-perinatal, myosin heavy chain 8, myosin heavy chain, skeletal muscle, perinatal
Species: mouse
Products:     Myh8

Top Publications

  1. Weydert A, Barton P, Harris A, Pinset C, Buckingham M. Developmental pattern of mouse skeletal myosin heavy chain gene transcripts in vivo and in vitro. Cell. 1987;49:121-9 pubmed
    ..In vitro, in the absence of the nerve, embryonic, perinatal, and adult IIB MHC mRNAs accumulate. The level of the latter two isomRNAs is influenced by culture conditions. ..
  2. Smith T, Miller J. Distinct myogenic programs of embryonic and fetal mouse muscle cells: expression of the perinatal myosin heavy chain isoform in vitro. Dev Biol. 1992;149:16-26 pubmed
    ..Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture. ..
  3. Nagandla H, Lopez S, Yu W, Rasmussen T, Tucker H, Schwartz R, et al. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol. 2016;410:86-97 pubmed publisher
    ..Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation. ..
  4. Kablar B, Tajbakhsh S, Rudnicki M. Transdifferentiation of esophageal smooth to skeletal muscle is myogenic bHLH factor-dependent. Development. 2000;127:1627-39 pubmed
    ..Taken together, these results indicate that transdifferentiation is the fate of all smooth muscle cells in the upper esophagus and is normally initiated by Myf5. ..
  5. Weiss A, McDonough D, Wertman B, Acakpo Satchivi L, Montgomery K, Kucherlapati R, et al. Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci U S A. 1999;96:2958-63 pubmed
  6. Vivian J, Gan L, Olson E, Klein W. A hypomorphic myogenin allele reveals distinct myogenin expression levels required for viability, skeletal muscle development, and sternum formation. Dev Biol. 1999;208:44-55 pubmed
  7. Miner J, Miller J, Wold B. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development. 1992;114:853-60 pubmed
  8. Weydert A, Daubas P, Lazaridis I, Barton P, Garner I, Leader D, et al. Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc Natl Acad Sci U S A. 1985;82:7183-7 pubmed
    ..This result is in contrast to that for other contractile protein genes such as the alkali myosin light chain and the actin multigene families, which are dispersed in the genome. ..
  9. Cox R, Weydert A, Barlow D, Buckingham M. Three linked myosin heavy chain genes clustered within 370 kb of each other show independent transcriptional and post-transcriptional regulation during differentiation of a mouse muscle cell line. Dev Biol. 1991;143:36-43 pubmed
    ..Post-transcriptional mechanisms also regulate cytoplasmic RNA accumulation of these MHC genes. ..

More Information

Publications31

  1. Ontell M, Ontell M, Buckingham M. Muscle-specific gene expression during myogenesis in the mouse. Microsc Res Tech. 1995;30:354-65 pubmed
    ..The differences in gene expression in these two types of muscle suggest that no single coordinated pattern of gene activation is required during the initial formation of the muscles of the mouse. ..
  2. Ontell M, Sopper M, Lyons G, Buckingham M, Ontell M. Modulation of contractile protein gene expression in fetal murine crural muscles: emergence of muscle diversity. Dev Dyn. 1993;198:203-13 pubmed
    ..abstract truncated at 400 words) ..
  3. Lyons G, Ontell M, Cox R, Sassoon D, Buckingham M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol. 1990;111:1465-76 pubmed
    ..The data presented are the first detailed study of myosin gene expression at these early stages of skeletal muscle development. ..
  4. Delgado Olguin P, Huang Y, Li X, Christodoulou D, Seidman C, Seidman J, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44:343-7 pubmed publisher
    ..Our results suggest that epigenetic dysregulation in embryonic progenitor cells is a predisposing factor for adult disease and dysregulated stress responses. ..
  5. He K, Hu J, Yu H, Wang L, Tang F, Gu J, et al. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. J Biol Chem. 2017;292:351-360 pubmed publisher
    ..Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis. ..
  6. Patapoutian A, Yoon J, Miner J, Wang S, Stark K, Wold B. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development. 1995;121:3347-58 pubmed
    ..Finally, a later and relatively mild phenotype was detected in intercostal muscles of newborn animals. ..
  7. Zappelli F, Willems D, Osada S, Ohno S, Wetsel W, Molinaro M, et al. The inhibition of differentiation caused by TGFbeta in fetal myoblasts is dependent upon selective expression of PKCtheta: a possible molecular basis for myoblast diversification during limb histogenesis. Dev Biol. 1996;180:156-64 pubmed
    ..They also suggest a specific role for protein kinase C theta in determining the fate of different myoblasts during muscle histogenesis. ..
  8. Daou N, Lecolle S, Lefebvre S, Della Gaspera B, Charbonnier F, Chanoine C, et al. A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development. 2013;140:4914-25 pubmed publisher
    ..Altogether, our findings demonstrate that the calcineurin/NFAT pathway plays a new role in establishing the early muscle fiber type in immature myofibers during embryogenesis. ..
  9. Usami A, Abe S, Ide Y. Myosin heavy chain isoforms of the murine masseter muscle during pre- and post-natal development. Anat Histol Embryol. 2003;32:244-8 pubmed
    ..In the compositional change of isoforms, the embryonic type MHCp was expressed consistently, whereas the adult isoforms increased with the developmental process...
  10. Lamberti A, Sanges C, Chambery A, Migliaccio N, Rosso F, Di Maro A, et al. Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie. 2011;93:1738-46 pubmed publisher
    ..Interestingly, a co-localization of SORBS2 and eEF1A was evidenced at level of plasma membrane, thus suggesting the involvement of eEF1A1 in novel key signal transduction complexes. ..
  11. Venuti J, Morris J, Vivian J, Olson E, Klein W. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol. 1995;128:563-76 pubmed
  12. Tonami K, Hata S, Ojima K, Ono Y, Kurihara Y, Amano T, et al. Calpain-6 deficiency promotes skeletal muscle development and regeneration. PLoS Genet. 2013;9:e1003668 pubmed publisher
  13. Cohen S, Brault J, Gygi S, Glass D, Valenzuela D, Gartner C, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185:1083-95 pubmed publisher
    ..Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1...
  14. Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn. 2005;234:301-11 pubmed
    ..Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development...
  15. Ontell M, Ontell M, Sopper M, Mallonga R, Lyons G, Buckingham M. Contractile protein gene expression in primary myotubes of embryonic mouse hindlimb muscles. Development. 1993;117:1435-44 pubmed
    ..These differences indicate that there is no single coordinate pattern of expression of contractile protein genes during initial formation of the muscles of the mouse.(ABSTRACT TRUNCATED AT 400 WORDS) ..
  16. Dennehey B, Leinwand L, Krauter K. Diversity in transcriptional start site selection and alternative splicing affects the 5'-UTR of mouse striated muscle myosin transcripts. J Muscle Res Cell Motil. 2006;27:559-75 pubmed
    ..These findings indicate that alternative TSS usage and alternative splicing in the 5'-UTR are a general feature of murine Myh gene expression and that Myh gene regulation is more complex than previously appreciated. ..
  17. Bertrand A, Renou L, Papadopoulos A, Beuvin M, Lacene E, Massart C, et al. DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Hum Mol Genet. 2012;21:1037-48 pubmed publisher
    ..And importantly, L-CMD patients should be investigated for putative metabolic disorders. ..
  18. Sun T, Jayatilake D, Afink G, Ataliotis P, Nister M, Richardson W, et al. A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. Development. 2000;127:4519-29 pubmed
    ..In addition, we found that the YAC transgene did not prolong survival of Patch mutant mice, indicating that genetic defects outside the PDGFRalpha locus contribute to the early embryonic lethality of Patch mice. ..
  19. Lu B, Allen D, Leinwand L, Lyons G. Spatial and temporal changes in myosin heavy chain gene expression in skeletal muscle development. Dev Biol. 1999;216:312-26 pubmed
    ..The changes in MyHC RNA and protein expression are distinct in different muscles and are restricted in some cases to particular regions of the muscle and do not always reflect their distribution in the adult. ..
  20. Block N, Zhu Z, Kachinsky A, Dominov J, Miller J. Acceleration of somitic myogenesis in embryos of myogenin promoter-MRF4 transgenic mice. Dev Dyn. 1996;207:382-94 pubmed
    ..MRF function, therefore, appears to be differentially regulated in dermatomal and myotomal cells. ..
  21. Amann R, Wyder S, Slavotinek A, Trueb B. The FgfrL1 receptor is required for development of slow muscle fibers. Dev Biol. 2014;394:228-41 pubmed publisher
    ..to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15...
  22. Weydert A, Daubas P, Caravatti M, Minty A, Bugaisky G, Cohen A, et al. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem. 1983;258:13867-74 pubmed
    ..There is thus a rapid transition after birth from fetal to adult skeletal muscle myosin heavy chain mRNA sequences. ..