nuoM

Summary

Gene Symbol: nuoM
Description: NADH:ubiquinone oxidoreductase, membrane subunit M
Alias: ECK2271, JW2272, nuoA
Species: Escherichia coli str. K-12 substr. MG1655
Products:     nuoM

Top Publications

  1. Torres Bacete J, Nakamaru Ogiso E, Matsuno Yagi A, Yagi T. Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J Biol Chem. 2007;282:36914-22 pubmed
    ..The membrane arm contains 7 hydrophobic subunits. Of these subunits, NuoM, a homolog of the mitochondrial ND4 subunit, is proposed to be involved in proton translocation and Q-binding...
  2. Ohnishi T. Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta. 1998;1364:186-206 pubmed
    ..A brief introduction of EPR technique was also described in Appendix A of this mini-review. ..
  3. Amarneh B, De Leon Rangel J, Vik S. Construction of a deletion strain and expression vector for the Escherichia coli NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta. 2006;1757:1557-60 pubmed
    ..A chromosomal deletion of all nuo genes has been achieved by homologous recombination. A vector that encodes all of the nuo genes has been constructed, and it expresses a functional enzyme. ..
  4. Kao M, Di Bernardo S, Nakamaru Ogiso E, Miyoshi H, Matsuno Yagi A, Yagi T. Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation. Biochemistry. 2005;44:3562-71 pubmed
    ..Together with the results on mutations related to human diseases, possible functional roles of the NuoJ subunit have been discussed. ..
  5. Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, et al. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem. 2003;278:25731-7 pubmed
    ..with [3H]azido-Q followed by analysis of the radioactivity distribution among the subunits revealed that subunit NuoM was heavily labeled, suggesting that this protein houses the Q-binding site...
  6. Euro L, Belevich G, Verkhovsky M, Wikstrom M, Verkhovskaya M. Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta. 2008;1777:1166-72 pubmed publisher
    Analysis of the amino acid sequences of subunits NuoM and NuoN in the membrane domain of Complex I revealed a clear common pattern, including two lysines that are predicted to be located within the membrane, and which are important for ..
  7. Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol. 1998;276:105-12 pubmed
  8. Matsushita K, Ohnishi T, Kaback H. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry. 1987;26:7732-7 pubmed
  9. Torres Bacete J, Sinha P, Castro Guerrero N, Matsuno Yagi A, Yagi T. Features of subunit NuoM (ND4) in Escherichia coli NDH-1: TOPOLOGY AND IMPLICATION OF CONSERVED GLU144 FOR COUPLING SITE 1. J Biol Chem. 2009;284:33062-9 pubmed publisher
    ..Escherichia coli NDH-1 is composed of 13 subunits (NuoA-N). NuoM (ND4) subunit is one of the hydrophobic subunits that constitute the membrane arm of NDH-1 and was predicted to ..

More Information

Publications69

  1. Euro L, Bloch D, Wikstrom M, Verkhovsky M, Verkhovskaya M. Electrostatic interactions between FeS clusters in NADH:ubiquinone oxidoreductase (Complex I) from Escherichia coli. Biochemistry. 2008;47:3185-93 pubmed publisher
    ..The observed redox titration curves are discussed in terms of intrinsic electrostatic interactions between FeS centers in complex I. A model showing shifts of E m due to the electrostatic interaction between the centers is presented. ..
  2. Baranova E, Holt P, Sazanov L. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution. J Mol Biol. 2007;366:140-54 pubmed
    ..at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution...
  3. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol. 1993;233:109-22 pubmed publisher
    ..To some extent, the gene order correlates with the topological arrangement of the encoded subunits. The conception of modular evolution of NADH: ubiquinone oxidoreductase is further supported by the arrangement of the nuo-genes...
  4. Holt P, Morgan D, Sazanov L. The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem. 2003;278:43114-20 pubmed
    ..Diheptanoyl phosphocholine led to the loss of NuoL and NuoM subunits, whereas other subunits remained in the complex...
  5. Amarneh B, Vik S. Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry. 2003;42:4800-8 pubmed
    ..strain by a plasmid that contains the previously identified nuoN gene and the upstream intergenic region between nuoM and nuoN...
  6. Satoh T, Miyoshi H, Sakamoto K, Iwamura H. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Biochim Biophys Acta. 1996;1273:21-30 pubmed
    ..1990) Arch. Biochem. Biophys. 281, 305-311). It is noteworthy that several synthetic capsaicins discriminated between NDH-1 and NDH-2 much better than natural capsaicin. ..
  7. Sinegina L, Wikstrom M, Verkhovsky M, Verkhovskaya M. Activation of isolated NADH:ubiquinone reductase I (complex I) from Escherichia coli by detergent and phospholipids. Recovery of ubiquinone reductase activity and changes in EPR signals of iron-sulfur clusters. Biochemistry. 2005;44:8500-6 pubmed
    ..895, 1.904, 2.05, which corresponds to the parameters reported for the N2 cluster. This data indicates conformational rearrangements of catalytic importance in complex I upon binding of phospholipids. ..
  8. Yagi T, Matsuno Yagi A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry. 2003;42:2266-74 pubmed
  9. Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997;1320:217-34 pubmed
    ..Reductive activation could be achieved by cellular reductants in the absence of O2. In addition, O2 may cause destruction and loss of the FeS cluster. It is not known whether this process is required for regulation of FNR function. ..
  10. Vik S. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis. FEBS Lett. 2011;585:1180-4 pubmed publisher
    ..In each subunit, transmembrane helices 9 and 12 are predicted to form the discontinuous helices, which are likely to play a key role in function. ..
  11. Choice E, Masin D, Bally M, Meloche M, Madden T. Liposomal cyclosporine. Comparison of drug and lipid carrier pharmacokinetics and biodistribution. Transplantation. 1995;60:1006-11 pubmed
  12. Bogachev A, Murtazina R, Skulachev V. H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol. 1996;178:6233-7 pubmed
    ..These data suggest that (i) the H+/e- stoichiometry for E. coli NDH-I is at least 1.5 and (ii) the DMSO reductase does not generate a proton motive force. ..
  13. Friedrich T. Complex I: a chimaera of a redox and conformation-driven proton pump?. J Bioenerg Biomembr. 2001;33:169-77 pubmed
    ..This implies that complex I contains two energy-coupling sites. The NADH dehydrogenase module seems to be involved in electron transfer and not in proton translocation. ..
  14. Wackwitz B, Bongaerts J, Goodman S, Unden G. Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet. 1999;262:876-83 pubmed
    The expression of the nuoA-N operon of Escherichia coli K-12, which encodes the proton-pumping NADH dehydrogenase I is modulated by growth phase-dependent regulation...
  15. Kervinen M, Pätsi J, Finel M, Hassinen I. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry. 2004;43:773-81 pubmed
  16. Friedrich T, Scheide D. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett. 2000;479:1-5 pubmed
    ..Six of them are also present in a family of membrane-bound multisubunit [NiFe] hydrogenases. It is discussed that they build a module for electron transfer coupled to proton translocation. ..
  17. Steuber J, Schmid C, Rufibach M, Dimroth P. Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol. 2000;35:428-34 pubmed
    ..With an E. coli mutant deficient in complex I, the Na+ transport activity was low (1-3 nmol mg-1 min-1), and rotenone was without effect. ..
  18. Uhlmann M, Friedrich T. EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a. Biochemistry. 2005;44:1653-8 pubmed
    ..A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria...
  19. Kaila V, Wikstr m M, Hummer G. Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proc Natl Acad Sci U S A. 2014;111:6988-93 pubmed publisher
    ..Overall, the observed water-gated transitions establish conduits for the unidirectional proton translocation processes, and provide a possible coupling mechanism for the energy transduction in complex I...
  20. Schneider D, Pohl T, Walter J, Dörner K, Kohlstädt M, Berger A, et al. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta. 2008;1777:735-9 pubmed publisher
    ..It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant. ..
  21. Tran Q, Bongaerts J, Vlad D, Unden G. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications. Eur J Biochem. 1997;244:155-60 pubmed
    ..NADH-->dimethylsulfoxide respiration is also dependent on NADH dehydrogenase I. The consequences for energy conservation by anaerobic respiration with NADH as a donor are discussed. ..
  22. Archer C, Elliott T. Transcriptional control of the nuo operon which encodes the energy-conserving NADH dehydrogenase of Salmonella typhimurium. J Bacteriol. 1995;177:2335-42 pubmed
    ..these genes are arranged as a single, large operon that is expressed from a complex promoter region upstream of nuoA. The DNA sequence of the promoter region was determined, and primer extension analysis of nuo transcripts was used ..
  23. Bungert S, Krafft B, Schlesinger R, Friedrich T. One-step purification of the NADH dehydrogenase fragment of the Escherichia coli complex I by means of Strep-tag affinity chromatography. FEBS Lett. 1999;460:207-11 pubmed
    ..This was achieved by fusing the Strep-tag II peptide to the C-terminus of NuoF or NuoG. Fusion of this peptide to the N-terminus of either NuoE or NuoF disturbed the assembly of the NADH dehydrogenase fragment. ..
  24. Leif H, Weidner U, Berger A, Spehr V, Braun M, van Heek P, et al. Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I. Biochem Soc Trans. 1993;21:998-1001 pubmed
  25. Gemperli A, Schaffitzel C, Jakob C, Steuber J. Transport of Na(+) and K (+) by an antiporter-related subunit from the Escherichia coli NADH dehydrogenase I produced in Saccharomyces cerevisiae. Arch Microbiol. 2007;188:509-21 pubmed
    ..The cation selectivity and function of the NuoL subunit as a transporter module of the NADH dehydrogenase complex is discussed. ..
  26. Pohl T, Uhlmann M, Kaufenstein M, Friedrich T. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry. 2007;46:10694-702 pubmed
    ..The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon...
  27. Erhardt H, Steimle S, Muders V, Pohl T, Walter J, Friedrich T. Disruption of individual nuo-genes leads to the formation of partially assembled NADH:ubiquinone oxidoreductase (complex I) in Escherichia coli. Biochim Biophys Acta. 2012;1817:863-71 pubmed publisher
    ..The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. ..
  28. Pohl T, Schneider D, Hielscher R, Stolpe S, Dörner K, Kohlstädt M, et al. Nucleotide-induced conformational changes in the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem Soc Trans. 2008;36:971-5 pubmed publisher
    ..EPR spectroscopy of surface mutants of the complex containing a covalently bound spin label at distinct positions demonstrates NADH-dependent conformational changes in both arms of the complex. ..
  29. Lan J, Newman E. A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source. Res Microbiol. 2003;154:191-7 pubmed
    Escherichia coli strains with mutations in 3 genes coding for redox functions--torA, nuoM and glpC--are able to grow with pyruvate as carbon source, but are not able to use a combination of serine, glycine and leucine as carbon source, ..
  30. Stolpe S, Friedrich T. The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem. 2004;279:18377-83 pubmed
    ..coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed. ..
  31. Euro L, Belevich G, Bloch D, Verkhovsky M, Wikstrom M, Verkhovskaya M. The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli. Biochim Biophys Acta. 2009;1787:68-73 pubmed publisher
  32. Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R, Weiss H. Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr. 1993;25:331-7 pubmed
    ..This assumption is further supported by the conserved order of bacterial complex I genes, which correlates with the topological arrangement of the corresponding subunits in the two parts of complex I. ..
  33. Hellwig P, Scheide D, Bungert S, Mäntele W, Friedrich T. FT-IR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain. Biochemistry. 2000;39:10884-91 pubmed
    ..Part of these signals are attributed to the reorganization of protonated/deprotonated Asp or Glu side chains. On the basis of these data we discuss the role of N2 for proton translocation of complex I. ..
  34. Braun M, Bungert S, Friedrich T. Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry. 1998;37:1861-7 pubmed
    ..The preparation fulfills all prerequisites for crystallization of the fragment. ..
  35. Bottcher B, Scheide D, Hesterberg M, Nagel Steger L, Friedrich T. A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2002;277:17970-7 pubmed
    ..Only the horseshoe-shaped complex I exhibits enzyme activity in detergent solution, which is abolished by the addition of salt. Therefore, it is proposed that this structure is the native conformation of the complex in the membrane. ..
  36. Calhoun M, Gennis R. Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J Bacteriol. 1993;175:3013-9 pubmed
    ..The enzyme encoded by this locus probably translocates protons across the inner membrane, contributing to the proton motive force. ..
  37. Zambrano M, Kolter R. Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol. 1993;175:5642-7 pubmed
    ..This is the first identification of genes encoding subunits of NADH dehydrogenase I in E. coli. The significance of the inability of these mutant strains to compete in stationary-phase cultures is discussed. ..
  38. Falk Krzesinski H, Wolfe A. Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in Escherichia coli. J Bacteriol. 1998;180:1174-84 pubmed
    ..In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I. ..
  39. Euro L, Belevich G, Wikstrom M, Verkhovskaya M. High affinity cation-binding sites in Complex I from Escherichia coli. Biochim Biophys Acta. 2009;1787:1024-8 pubmed publisher
    ..K(+) and La(3+) do not occupy the same site. Possible localization of these metal-binding sites and their implication in catalysis are discussed. ..
  40. Hayashi M, Miyoshi T, Takashina S, Unemoto T. Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. Biochim Biophys Acta. 1989;977:62-9 pubmed
    ..The FAD-containing NQR was very similar to that purified by Jaworowski et al. (Biochemistry (1981) 20, 2041-2047), and reduced Q1 without generating delta psi. ..
  41. Mamedova A, Holt P, Carroll J, Sazanov L. Substrate-induced conformational change in bacterial complex I. J Biol Chem. 2004;279:23830-6 pubmed
    ..The enzyme retains its L-shape in the presence of NADH, but exhibits a significantly more open or expanded structure both in the peripheral arm and, unexpectedly, in the membrane domain also. ..
  42. Steuber J. The C-terminally truncated NuoL subunit (ND5 homologue) of the Na+-dependent complex I from Escherichia coli transports Na+. J Biol Chem. 2003;278:26817-22 pubmed
    ..This Na+ uptake was prevented by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), which acts as inhibitor against Na+/H+ antiporters. ..
  43. Kao M, Nakamaru Ogiso E, Matsuno Yagi A, Yagi T. Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli. Biochemistry. 2005;44:9545-54 pubmed
    ..Possible roles of these arginine residues and other conserved residues in the NuoK subunit for NDH-1 function were discussed. ..
  44. Morgan D, Sazanov L. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. Biochim Biophys Acta. 2008;1777:711-8 pubmed publisher
    ..The model of the entire bacterial complex I could be built from the crystal structures of subcomplexes using the EM envelope described here. ..
  45. Yagi T. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys. 1990;281:305-11 pubmed
    ..The mechanism by which capsaicin inhibits the energy-transducing NADH-quinone oxidoreductase is discussed. ..
  46. Poole R, Haddock B. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Biochem J. 1974;144:77-85 pubmed
    ..8. Results are interpreted as evidence of the ubiquinone-dependent, but cytochrome-independent, nature of the site I region of the respiratory chain in E. coli. ..
  47. Calhoun M, Oden K, Gennis R, de Mattos M, Neijssel O. Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol. 1993;175:3020-5 pubmed
  48. Friedrich T. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta. 1998;1364:134-46 pubmed
  49. Verkhovskaya M, Belevich N, Euro L, Wikstrom M, Verkhovsky M. Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A. 2008;105:3763-7 pubmed publisher
    ..Possible consequences of these findings for the proton translocation mechanism are discussed. ..
  50. Esterházy D, King M, Yakovlev G, Hirst J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry. 2008;47:3964-71 pubmed publisher
    ..In contrast, bovine complex I produces 95% superoxide. The results are consistent with (but do not prove) a specific role for cluster N1a in determining the outcome of O2 reduction; possible reaction mechanisms are discussed. ..
  51. David P, Baumann M, Wikstrom M, Finel M. Interaction of purified NDH-1 from Escherichia coli with ubiquinone analogues. Biochim Biophys Acta. 2002;1553:268-78 pubmed
    ..Both ubiquinone-2 and decylubiquinone are good acceptors for this enzyme, while affinity of NDH-1 for ubiquinone-1 is clearly lower than for the other two, particularly in the purified state. ..
  52. Sazanov L. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry. 2007;46:2275-88 pubmed
    ..In this review, novel mechanistic implications of the structure are discussed, and the effects of many known mutations of complex I subunits are interpreted in a structural context. ..
  53. Yang Y, Bennett G, San K. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng. 1999;65:291-7 pubmed
    The nuoA-N gene cluster encodes a transmembrane NADH:ubiquinone oxidoreductase (NDH-I) responsible for coupling redox chemistry to proton-motive force generation...
  54. Spehr V, Schlitt A, Scheide D, Guenebaut V, Friedrich T. Overexpression of the Escherichia coli nuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). Biochemistry. 1999;38:16261-7 pubmed
    ..Due to its stability over a wide pH range and at very high salt concentrations, this preparation is well suited for structural investigations. ..
  55. Finel M, Majander A. Studies on the proton-translocating NADH:ubiquinone oxidoreductases of mitochondria and Escherichia coli using the inhibitor 1,10-phenanthroline. FEBS Lett. 1994;339:142-6 pubmed
    ..EPR spectroscopy of membranous E. coli NDH1 shows that two slow- and one fast-relaxing Fe-S clusters become detectable upon reduction by NADH in the presence of OP. However, none of them resembles the mitochondrial cluster 2. ..
  56. Neijssel O, Teixeira de Mattos M. The energetics of bacterial growth: a reassessment. Mol Microbiol. 1994;13:172-82 pubmed
    ..The different strains indeed show different growth efficiencies. The physiological significance of energetically less-efficient branches of the respiratory chain is discussed. ..
  57. Leif H, Sled V, Ohnishi T, Weiss H, Friedrich T. Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem. 1995;230:538-48 pubmed
    ..This subunit arrangement coincidences to some extent with the order of the genes on the nuo operon. A topological model of the E. coli complex I is proposed...
  58. Michel J, DeLeon Rangel J, Zhu S, Van Ree K, Vik S. Mutagenesis of the L, M, and N subunits of Complex I from Escherichia coli indicates a common role in function. PLoS ONE. 2011;6:e17420 pubmed publisher
    ..The results show a close correlation with reduced activity among the corresponding mutations, and provide evidence that the L, M, and N subunits have a common role in Complex I. ..
  59. Bongaerts J, Zoske S, Weidner U, Unden G. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol. 1995;16:521-34 pubmed
    The promoter region and transcriptional regulation of the nuoA-N gene locus encoding the proton-translocating NADH:quinone oxidoreductase was analysed...
  60. Baranova E, Morgan D, Sazanov L. Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Struct Biol. 2007;159:238-42 pubmed
    ..This indicates that coupling mechanism of complex I is likely to involve long range conformational changes. ..