Gene Symbol: fliH
Description: negative regulator of FliI ATPase activity
Alias: ECK1938, JW1924, flaAII.3, flaBIII
Species: Escherichia coli str. K-12 substr. MG1655

Top Publications

  1. González Pedrajo B, Minamino T, Kihara M, Namba K. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol. 2006;60:984-98 pubmed
    ..FliN was found to associate with FliH, a flagellar export component that regulates the ATPase activity of FliI...
  2. Moriya N, Minamino T, Hughes K, Macnab R, Namba K. The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J Mol Biol. 2006;359:466-77 pubmed
    ..We propose that FliK(N) acts as a flexible tape measure, but that hook length is also dependent on the hook elongation rate and a switch timing mechanism. ..
  3. Hasegawa K, Yamashita I, Namba K. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys J. 1998;74:569-75 pubmed
  4. Maki S, Vonderviszt F, Furukawa Y, Imada K, Namba K. Plugging interactions of HAP2 pentamer into the distal end of flagellar filament revealed by electron microscopy. J Mol Biol. 1998;277:771-7 pubmed
    ..This also allows us to model the axial domain arrangement of flagellin subunit in the filament. ..
  5. Kutsukake K, Minamino T, Yokoseki T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol. 1994;176:7625-9 pubmed
    ..On the basis of these results, we discuss the mechanism of suppression of the fliK defects by the flhB mutations and propose a hypothesis on the export switching machinery of the flagellar proteins. ..
  6. González Pedrajo B, Fraser G, Minamino T, Macnab R. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol. 2002;45:967-82 pubmed
    b>FliH is a soluble component of the flagellar export apparatus that binds to the ATPase FliI, and negatively regulates its activity. The 235-amino-acid FliH dimerizes and interacts with FliI to form a hetero-trimeric (FliH)2FliI complex...
  7. Komeda Y, Silverman M, Simon M. Genetic analysis of Escherichia coli K-12 region I flagellar mutants. J Bacteriol. 1977;131:801-8 pubmed
    ..The definition of region I fla genes and their transcriptional relationships were confirmed by genetic tests with hybrid A phage carrying fla genes in this region. ..
  8. Bartlett D, Matsumura P. Identification of Escherichia coli region III flagellar gene products and description of two new flagellar genes. J Bacteriol. 1984;160:577-85 pubmed
    ..Two additional genes were found at the flaB locus, and we subdivided the flaB gene into flaB1, flaBII, and flaBIII. The cheY suppressor mutations which have previously been mapped to flaB were further localized to flaB11 (..
  9. Ferris H, Furukawa Y, Minamino T, Kroetz M, Kihara M, Namba K, et al. FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem. 2005;280:41236-42 pubmed
    ..Finally, we provide evidence via peptide analysis and FlhB cleavage variants that the tertiary structure of FlhB plays a significant role in cleavage. Based on these results, we propose that FlhB cleavage is an autocatalytic process. ..

More Information


  1. Maki Yonekura S, Yonekura K, Namba K. Domain movements of HAP2 in the cap-filament complex formation and growth process of the bacterial flagellum. Proc Natl Acad Sci U S A. 2003;100:15528-33 pubmed
  2. Minamino T, Chu R, Yamaguchi S, Macnab R. Role of FliJ in flagellar protein export in Salmonella. J Bacteriol. 2000;182:4207-15 pubmed
    ..We conclude that FliJ is a general component of the flagellar export apparatus and has a chaperone-like activity for both rod/hook-type and filament-type substrates. ..
  3. Zhu K, González Pedrajo B, Macnab R. Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry. 2002;41:9516-24 pubmed
    ..The components examined were two integral membrane proteins, FlhA and FlhB, and two soluble components, FliH and the ATPase FliI...
  4. Samatey F, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature. 2001;410:331-7 pubmed
    ..By simulated extension of the protofilament model, we have identified possible switch regions responsible for the bi-stable mechanical switch that generates the 0.8 A difference in repeat distance. ..
  5. Minamino T, Tame J, Namba K, Macnab R. Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. J Mol Biol. 2001;312:1027-36 pubmed
    ..It forms a complex with a regulatory protein FliH in the cytoplasm...
  6. McMurry J, Murphy J, González Pedrajo B. The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex. Biochemistry. 2006;45:11790-8 pubmed
    b>FliH regulates the flagellar export ATPase FliI, preventing nonproductive ATP hydrolysis. FliH has been shown to stably associate with the C ring protein FliN...
  7. Minamino T, Ferris H, Moriya N, Kihara M, Namba K. Two parts of the T3S4 domain of the hook-length control protein FliK are essential for the substrate specificity switching of the flagellar type III export apparatus. J Mol Biol. 2006;362:1148-58 pubmed
  8. Kubori T, Sukhan A, Aizawa S, Galan J. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A. 2000;97:10225-30 pubmed
    ..We hypothesize that the needle component may establish the specificity of type III secretion systems in delivering proteins into either plant or animal cells. ..
  9. Fan F, Macnab R. Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem. 1996;271:31981-8 pubmed
    ..We propose that FliI has a C-terminal ATPase domain and an N-terminal domain that interacts with other components in the flagellum-specific export apparatus. ..
  10. Minamino T, Macnab R. Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol. 1999;181:1388-94 pubmed
    ..Hook-capping protein (FlgD) and hook protein (FlgE) required FlhA, FlhB, FliH, FliI, FliO, FliP, FliQ, and FliR for their export to the periplasm...
  11. Auvray F, Ozin A, Claret L, Hughes C. Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J Mol Biol. 2002;318:941-50 pubmed
    ..We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH(2)/FliI heterotrimerisation...
  12. Al Mamun A, Tominaga A, Enomoto M. Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei. J Bacteriol. 1997;179:4493-500 pubmed
    ..Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei...
  13. Claret L, Calder S, Higgins M, Hughes C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol. 2003;48:1349-55 pubmed
    ..The data reveal central facets of the structure and action of the flagellar assembly ATPase and, by extension, the homologous ATPases of virulence-related type III export systems. ..
  14. Minamino T, Saijo Hamano Y, Furukawa Y, González Pedrajo B, Macnab R, Namba K. Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J Mol Biol. 2004;341:491-502 pubmed
    ..The conformational flexibility of FliK(C) may play a role in interfering with switching at an inappropriate point of flagellar assembly. ..
  15. Yonekura K, Maki S, Morgan D, DeRosier D, Vonderviszt F, Imada K, et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science. 2000;290:2148-52 pubmed
    ..This represents one of the most dynamic movements in protein structures. ..
  16. Minamino T, Kazetani K, Tahara A, Suzuki H, Furukawa Y, Kihara M, et al. Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol. 2006;360:510-9 pubmed
  17. Roman S, Frantz B, Matsumura P. Gene sequence, overproduction, purification and determination of the wild-type level of the Escherichia coli flagellar switch protein FliG. Gene. 1993;133:103-8 pubmed
    ..Purified FliG and anti-FliG Ab will be useful for direct biochemical analyses of CheY-switch protein interaction. ..
  18. Thomas J, Stafford G, Hughes C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A. 2004;101:3945-50 pubmed
    ..Membrane localization persisted in fliOPQR, flhB, flhA, fliJ, and fliH null mutants lacking specific flagellar export components but depended on the presence of the membrane-associated ..
  19. Komeda Y. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol. 1982;150:16-26 pubmed
    ..These results are discussed with respect to the possible assembly sequence of the fla gene products. ..
  20. Fraser G, González Pedrajo B, Tame J, Macnab R. Interactions of FliJ with the Salmonella type III flagellar export apparatus. J Bacteriol. 2003;185:5546-54 pubmed
    ..It was known from previous studies that FliJ interacts with the N-terminal region of FliH, a negative regulator of the ATPase FliI...
  21. Minamino T, González Pedrajo B, Kihara M, Namba K, Macnab R. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol. 2003;185:3983-8 pubmed
    ..It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its ..
  22. McMurry J, Van Arnam J, Kihara M, Macnab R. Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol. 2004;186:7586-92 pubmed
    ..Affinity blotting showed that FlhA interacts with several other export apparatus membrane proteins. The implications of these findings are discussed, and a model of FlhA within the export apparatus is presented. ..
  23. Hirano T, Shibata S, Ohnishi K, Tani T, Aizawa S. N-terminal signal region of FliK is dispensable for length control of the flagellar hook. Mol Microbiol. 2005;56:346-60 pubmed
  24. Minamino T, Macnab R. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol. 2000;35:1052-64 pubmed
    We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components...
  25. Komeda Y, Kutsukake K, Iino T. Definition of additional flagellar genes in Escherichia coli K12. Genetics. 1980;94:277-90 pubmed
    ..The flB gene was found to be part of an operon: flB-flaI in region II. In region III, a previously unidentified gene flbC was located between hag and flaN. ..
  26. Minamino T, Yoshimura S, Morimoto Y, Gonz lez Pedrajo B, Kami ike N, Namba K. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol Microbiol. 2009;74:1471-83 pubmed publisher
    ..FliI ATPase forms a complex with its regulator FliH and facilitates initial entry of export substrates to the export gate composed of six integral membrane proteins...
  27. Minamino T, Macnab R. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol. 2000;182:4906-14 pubmed
    ..FliK itself is an export substrate; its binding properties for FlhB(C) resemble those of FlgD and do not provide any evidence for a physical interaction beyond that of the export process. ..
  28. Kihara M, Minamino T, Yamaguchi S, Macnab R. Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J Bacteriol. 2001;183:1655-62 pubmed
    ..The data from this study provide genetic support for a model in which at least the FlhA component of the export apparatus physically interacts with the MS ring within which it is housed. ..
  29. Minamino T, Macnab R. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol. 2000;37:1494-503 pubmed
    Both FliH and the ATPase FliI are cytoplasmic components of the Salmonella type III flagellar export apparatus...